智能交通控制与资源调度:技术融合与创新
1. 智能交通控制概述
智能交通控制旨在解决网络中复杂的流量管理问题,以提高网络性能和效率。在当今网络环境中,随着设备数量和应用的不断增加,传统的交通控制方法已难以满足需求。因此,引入机器学习等先进技术成为必然趋势。
1.1 机器学习辅助的负载均衡路由方案
为了实现高效的网络流量分配,我们提出了一种基于机器学习的负载均衡路由方案。该方案考虑了队列利用率等因素,通过学习网络状态和流量模式,动态调整路由决策,以达到负载均衡的目的。
1.2 相关研究方法
以下是一些在智能交通控制领域的重要研究方法:
- QMIX 辅助路由 :在基于社交的延迟容忍网络中,QMIX 算法可以帮助优化路由选择,提高数据传输的效率。
- 基于学习的域内 QoS 路由 :通过学习网络状态和流量特征,实现域内的服务质量(QoS)路由,确保关键业务的性能要求。
- 人工智能赋能的 QoS 导向网络关联 :利用人工智能技术,为下一代移动网络提供 QoS 导向的网络关联,提高网络资源的利用率。
1.3 实验结果
大量的实验结果表明,上述方法在提高网络性能和效率方面是可行且有效的。这些方法能够显著减少网络拥塞,提高数据传输的可靠性和实时性。
2. 智能资源调度
随着物联网(IoT)设备的不断增加,满足同一 IoT 网络内的多维 QoS 变得越来越具有挑战性。为了解决这个问题,我们提出了一系列智能资源调度方案
订阅专栏 解锁全文
1374

被折叠的 条评论
为什么被折叠?



