TensorFlow
文章平均质量分 52
plus_left
路漫漫其修远兮
展开
-
生成对抗网络(GAN)的断点续训问题——savemodel的使用
生成对抗网络(GAN)的断点续训问题——savemodel的使用1.问题简介2.解决办法checkpoint的不可行性savemodel关键代码如下全部代码如下有关代码讲解文章最后有逐行讲解视频链接3.运行结果1.问题简介最近使用GAN做图像生成,发现有时候数据集大网络层数多时,训练需要很长时间,若是中途因为服务器问题或者人为问题意外停止训练,那么续训练这一操作则需要完成。因此参考了tf官网给出的几种方法对断点续训做出了实验,并完成了这一工作。2.解决办法checkpoint的不可行性最先想到的是原创 2021-05-07 09:38:33 · 995 阅读 · 0 评论 -
基于keras的GAN网络手把手代码教学+注释
基于keras的GAN网络手把手代码教学+注释代码如下视频手把手教学代码如下# by plus_leftfrom tensorflow.keras import Sequential,Modelfrom tensorflow.keras.layers import Dense, Reshape, Input, Flattenfrom tensorflow.keras.layers import LeakyReLU, BatchNormalizationfrom tensorflow.kera原创 2021-04-12 22:35:29 · 2090 阅读 · 9 评论 -
CGAN中的label_embedding = Flatten()(Embedding(10, 100)(label))行代码解释
在看CGAN代码是对该行产生困惑label_embedding = Flatten()(Embedding(10, 100)(label))经查询和测试两个函数Flatten()和Embedding() 得出以下结论,以便后续复习使用。1.测试内容1from tensorflow.keras.layers import Flatten, Embedding, Inputlabel = Input(shape=(1,), dtype='int32')# label = np.random.ran原创 2021-04-04 09:42:54 · 922 阅读 · 1 评论 -
tensorflow中checkpoint断点生成,保存,下载参数续训。
四段代码实现参数保存、下载、续训练1.设置ckpt文件保存路径其中保存有模型参数(特定文件类型checkpoint_save_path = "checkpoint/mnist.ckpt"2.判断是否有索引,如果保存了参数模型,会有相应索引文件if os.path.exists(checkpoint_save_path + '.index'): print("---------------loading the model---------------") model.load原创 2020-12-05 11:28:54 · 1180 阅读 · 4 评论 -
mnist数据集预测中输入图片的问题
from PIL import Imageimport numpy as npimport tensorflow as tfmnist = tf.keras.datasets.mnist(x_train, y_train), (x_test, y_test) = mnist.load_data()x_train, x_test = x_train / 255.0, x_test / 255.0# 下载参数model_save_path = './checkpoint/mnist.ckpt'原创 2020-12-04 18:02:37 · 346 阅读 · 1 评论 -
20201121熵(信息论)与BP算法顿悟
熵H( p )交叉熵H(p,q)相对熵KL散度Dkl(p||q) p:目标概率分布 与 q:近似p的概率分布 的信息损失量化三者关系 熵+相对熵=交叉熵BP算法反向传播中的随机梯度下降详情见大佬链接,弱鸡学习完毕懒于重复整理KL散度(相对熵).三者关系.JS散度.万一有人需要,看完不会你砍我(别真下手)(可能需要科学上网...原创 2020-11-21 21:05:25 · 234 阅读 · 0 评论 -
CNN输入图片进行预测TF2版本
CNN输入图片进行预测一、直接上全码 已注解二、知乎大神输入n张图片,进行批量预测三、在此附上py数据集存储为图片的代码一、直接上全码 已注解import tensorflow as tfimport numpy as npfrom PIL import imagefrom tensorflow.keras.layers import Conv2D, BatchNormalization, Activation, MaxPool2D, Dropout, Flatten, Densefrom te原创 2020-11-11 20:48:20 · 870 阅读 · 0 评论 -
第一个GAN网络(待完善)
from __future__ import print_function, divisionfrom tensorflow.keras.datasets import mnistfrom tensorflow.keras.layers import Input, Dense, Reshape, Flatten, Dropoutfrom tensorflow.keras.layers import BatchNormalization, Activation, ZeroPadding2Dfrom转载 2020-11-10 21:39:08 · 184 阅读 · 0 评论 -
tf.keras下model.compile(metrics=[‘’])的metrics参数问题
y和y_都是数值 ‘accuracy’y_和y都是独热码(概率分布y)使用 ‘categorical_accuracy’y_是数值,y是独热码(概率分布)则使用 ‘sparse_categorical_accuracy’原创 2020-11-10 20:12:02 · 4591 阅读 · 0 评论 -
conda虚拟环境下tf1和tf2版本共存问题及解决方案
conda虚拟环境下tf1和tf2版本共存问题及解决方案一、虚环境的配置安装相关杂项二、遇到大坑三、配置全过程1.下载python3.6.8并安装2.下载anaconda最新版本3.cmd命令行操作创建两个虚拟环境4.查看并分别进入两个虚拟环境安装对应的tensorflow5.两个conda虚拟环境的tf安装成功后,在pycharm导入、切换一、虚环境的配置安装相关杂项相信想安装虚环境的朋友已经掌握了安装单个环境的能力,所以这里不在赘述,只讨论更深层次问题。我们安装tensorflow的过程是在con原创 2020-11-10 12:14:08 · 2531 阅读 · 1 评论 -
RNN循环神经网络——embedding的理解
RNN中Embedding的一些理解一、RNN 循环神经网络1. 1循环核:1.2 循环核按时间步展开1.3循环计算层二、tf描述一个循环计算层2.1基本函数2.1进入RNN时,x_train的维度2.3循环计算过程三、Embedding编码代替独热码3.1思想:3.2代码实现:3.3参数理解感谢北京大学曹健老师的《tensorflow笔记》,收益良多,基本属于课上内容,搬砖至此,作为笔记。一、RNN 循环神经网络以实现连续数据预测为例,在这里先引入几个概念1. 1循环核:具有记忆力,通过不同时刻原创 2020-10-31 15:02:01 · 3876 阅读 · 0 评论 -
FCNN和CNN笔记
神经网络全连接神经网络训练全连接神经网络预测基本卷积神经网络全连接神经网络训练import tensorflow as tfimport numpy as npimport osfrom matplotlib import pyplot as plt# 将打印项目全部不以省略号的形式输出np.set_printoptions(threshold=np.inf)# 下载数据集mnist = tf.keras.datasets.mnist(x_train, y_train), (x_tes原创 2020-10-30 12:03:37 · 1895 阅读 · 0 评论 -
记录TensorFlow安装中找不到对应tf版本的问题解决
所遇问题找了n多种方法什么镜像啊(我有vpn啊什么python版本要和anaconda版本对应啊等等等等最后emmmm 我电脑64位的下载了32位的anaconda。。。。换成64位的就好了原创 2020-09-02 20:47:35 · 1512 阅读 · 0 评论