前言:
雪花算法,比较常用,而且也很简单。
也有可能面试会问到。
简单知道原理就可以~主要是分布式系统产生唯一ID或者主键
目录
1. 雪花算法的组成
SnowFlake算法用来生成64位的ID,刚好可以用long整型存储,能够用于分布式系统中生产唯一的ID, 并且生成的ID有大致的顺序。 在这次实现中,生成的64位ID可以分成5个部分:
0 - 41位时间戳 - 5位数据中心标识 - 5位机器标识 - 12位序列号
整体按照这个来组合的话,整个分布式系统不会有重复的ID;
因为有datacenter和机器ID作为保证
2.雪花算法的优缺点
- UUID(缺点:太长、没法排序、使数据库性能降低)
- Redis(缺点:必须依赖Redis)(相当于使用中间件来获得ID)
- Snowflake雪花算法,优点:生成有顺序的id,提高数据库的性能
- 效率较高,经测试,snowflake每秒能够产生26万ID左右,完全满足需要。
3. 一个GITHUB star较多的雪花算法
/**
* twitter的snowflake算法 -- java实现
*
* @author beyond
* @date 2016/11/26
*/
public class SnowFlake {
/**
* 起始的时间戳
*/
private final static long START_STMP = 1480166465631L;
/**
* 每一部分占用的位数
*/
private final static long SEQUENCE_BIT = 12; //序列号占用的位数
private final static long MACHINE_BIT = 5; //机器标识占用的位数
private final static long DATACENTER_BIT = 5;//数据中心占用的位数
/**
* 每一部分的最大值
*/
private final static long MAX_DATACENTER_NUM = -1L ^ (-1L << DATACENTER_BIT);
private final static long MAX_MACHINE_NUM = -1L ^ (-1L << MACHINE_BIT);
private final static long MAX_SEQUENCE = -1L ^ (-1L << SEQUENCE_BIT);
/**
* 每一部分向左的位移
*/
private final static long MACHINE_LEFT = SEQUENCE_BIT;
private final static long DATACENTER_LEFT = SEQUENCE_BIT + MACHINE_BIT;
private final static long TIMESTMP_LEFT = DATACENTER_LEFT + DATACENTER_BIT;
private long datacenterId; //数据中心
private long machineId; //机器标识
private long sequence = 0L; //序列号
private long lastStmp = -1L;//上一次时间戳
public SnowFlake(long datacenterId, long machineId) {
if (datacenterId > MAX_DATACENTER_NUM || datacenterId < 0) {
throw new IllegalArgumentException("datacenterId can't be greater than MAX_DATACENTER_NUM or less than 0");
}
if (machineId > MAX_MACHINE_NUM || machineId < 0) {
throw new IllegalArgumentException("machineId can't be greater than MAX_MACHINE_NUM or less than 0");
}
this.datacenterId = datacenterId;
this.machineId = machineId;
}
/**
* 产生下一个ID
*
* @return
*/
public synchronized long nextId() {
long currStmp = getNewstmp();
if (currStmp < lastStmp) {
throw new RuntimeException("Clock moved backwards. Refusing to generate id");
}
if (currStmp == lastStmp) {
//相同毫秒内,序列号自增
sequence = (sequence + 1) & MAX_SEQUENCE;
//同一毫秒的序列数已经达到最大
if (sequence == 0L) {
currStmp = getNextMill();
}
} else {
//不同毫秒内,序列号置为0
sequence = 0L;
}
lastStmp = currStmp;
return (currStmp - START_STMP) << TIMESTMP_LEFT //时间戳部分
| datacenterId << DATACENTER_LEFT //数据中心部分
| machineId << MACHINE_LEFT //机器标识部分
| sequence; //序列号部分
}
private long getNextMill() {
long mill = getNewstmp();
while (mill <= lastStmp) {
mill = getNewstmp();
}
return mill;
}
private long getNewstmp() {
return System.currentTimeMillis();
}
public static void main(String[] args) {
SnowFlake snowFlake = new SnowFlake(2, 3);
for (int i = 0; i < (1 << 12); i++) {
System.out.println(snowFlake.nextId());
}
}
}
4.计算结果
PS:
-1L ^ (-1L << DATACENTER_BIT) = 31
1 << 12 结果是 4096
367394974234587304
367394974234587305
367394974234587306
367394974234587307
367394974234587308
367394974234587309
367394974234587310
367394974238781440
367394974238781441
367394974238781442
367394974238781443
367394974238781444
367394974238781445
367394974238781446
367394974238781447
367394974238781448
367394974238781449
367394974238781450
367394974238781451
367394974238781452
367394974238781453
367394974238781454
367394 974238781455
这是过几秒再次运行的第一个数据
36739 5235732664320
截取一小部分,所以雪花算法如果同时生成还是有顺序的。
附:
git地址:
https://github.com/beyondfengyu/SnowFlake/edit/master/SnowFlake.java