自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(8)
  • 收藏
  • 关注

原创 PCA主成分分析法

主成分分析(PCA,Principal Component Analysis)是一种经典的统计分析方法,用于在高维数据中提取关键信息并降低数据维度。它通过将数据映射到一个新的坐标系统,使得新坐标轴(主成分)能够最大程度地保留数据的方差,从而在减少数据维度的同时,尽可能保留数据的原始特征。PCA在数据预处理、特征提取、数据可视化等领域被广泛应用,是数据科学和机器学习中不可或缺的工具之一。我们使用著名的MNIST手写数字数据集。该数据集包含了0到9的手写数字图片,每张图片是28x28的灰度图像。代码实现。

2025-06-16 15:38:43 809

原创 垃圾邮件过滤器

定义支持向量机(Support Vector Machine,简称SVM)是一种监督学习算法,主要用于分类和回归任务。在分类问题中,它通过在特征空间中找到一个最优的划分超平面,将不同类别的数据分开。对于回归任务,它会构建一个模型来预测连续的数值。通过上述步骤,我们成功地构建了一个基于支持向量机(SVM)和字典树(Trie)的垃圾邮件过滤器。这个过滤器能够高效地处理和分类邮件,具有较高的准确率。你可以根据需要调整SVM的参数(如核函数和正则化参数C)来进一步优化模型的性能。# 导入必要的库。

2025-06-02 23:42:09 637

原创 逻辑回归模型

本文介绍了逻辑回归的概念,指出它是一种用于分类问题的统计学算法,通过sigmoid函数将特征映射为概率值。接着阐述了其基本原理,包括如何利用特征和参数计算事件发生的概率,并通过损失函数和梯度下降进行优化。文章还列举了逻辑回归在金融、医疗和营销等领域的实际应用,如评估信用风险、预测疾病和优化营销策略。最后,通过代码实现展示了如何加载数据、定义关键函数、进行梯度下降优化,并绘制决策边界以直观呈现分类效果。通过分析客户的信用历史、收入水平等特征,模型可以预测客户是否会违约,从而帮助公司做出更明智的信贷决策。

2025-05-19 23:38:07 453

原创 贝叶斯算法判断西瓜好坏

一、引言:朴素贝叶斯算法朴素贝叶斯算法是一种基于贝叶斯定理的监督学习算法,主要用于分类问题,特别是在处理离散特征时。朴素贝叶斯算法是假设特征之间相互独立的,因此称之为“朴素”。尽管这个假设在现实中往往不成立,但它在实际应用中仍然表现出很好的性能,特别是在文本分类(如垃圾邮件检测、情感分析)等领域。二、朴素贝叶斯概述:朴素贝叶斯是贝叶斯决策理论中的一部分,而贝叶斯决策理论是基于贝叶斯定理的一种统计方法,因此我会先为大家介绍何为“贝叶斯定理”。1. 贝叶斯定理。

2025-05-05 22:01:16 561

原创 决策树简介与应用

决策树是一种直观且高效的基本分类与回归方法,其以树形结构形象地模拟决策过程。在这个树形结构中,每个内部节点代表对一个特征属性的测试,例如在判断水果是否成熟时,可能会测试 “颜色”“硬度” 等特征;每个分支代表测试的输出结果,比如 “颜色” 特征测试后,分支可能是 “红色”“绿色” 等;而每个叶节点则代表一种类别标签,如 “成熟”“未成熟”。通过这样的结构,决策树不仅能够提取数据中最有用的特征,还能以可视化的方式模拟各类决策过程,广泛应用于数据分析、模式识别等多个领域。

2025-04-21 22:09:53 949

原创 模型评估K-近邻算法

1.什么是模型评估模型评估是对训练好的模型性能进行评估, 模型评估是模型开发过程不可或缺的一部分。它有助于发现表达数据的最佳模型和所选模型将来工作的性能如何。2.模型评估的类型机器学习的任务有回归,分类和聚类,针对不同的任务有不同的评价指标。按照数据集的目标值不同,可以把模型评估分为分类模型评估和回归模型评估。3.为什么要进行模型评估?模型评估是对训练好的模型性能进行评估, 模型评估是模型开发过程不可或缺的一部分。它有助于发现表达数据的最佳模型和所选模型将来工作的性能如何。二、模型评估方法。

2025-04-07 19:45:34 612

原创 机器学习:基于K近邻算法的分类器实现

通过实现基于K近邻算法的分类器,解决海伦在在线约会网站上对约会对象进行分类的问题,即根据约会对象的三个特征(每年获得的飞行常客里程数、玩视频游戏所耗时间百分比、每周消费的冰淇淋公升数),将其归类为“不喜欢”“一般喜欢”“非常喜欢”三种类型之一。通过本次实验,深入理解了K近邻算法的原理和实现过程,掌握了数据预处理、模型验证和应用的方法,同时也发现了算法的局限性和改进方向,为后续的机器学习研究和应用提供了宝贵的经验。现需要实现将一个待分类样本的三个特征值输入程序后,能够识别该样本的类别,并且将该类别输出。

2025-03-24 19:51:03 626

原创 Anaconda安装+配置+环境创建

创建虚拟环境:conda create -n 环境名 python=版本号。输入电子邮箱后可获得下载的链接,之后根据操作下载setup软件。接着点击next->I agree,来到下一个界面。激活虚拟环境:conda activate 环境名。最后退出虚拟环境:conda deactivate。双击击系统变量的Path,根据下载的地址添加变量。选择All Users,接着点击Next。然后输入conda env list。install后接着将这两个都勾选。如图为setup软件打开的页面。

2025-03-06 03:18:51 361

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除