LeetCode 题解(120): Kth Largest Element in an Array

题目:

Find the kth largest element in an unsorted array. Note that it is the kth largest element in the sorted order, not the kth distinct element.

For example,
Given [3,2,1,5,6,4] and k = 2, return 5.

Note:
You may assume k is always valid, 1 ≤ k ≤ array's length.

题解:

用Quick Sort的divide-and-conquer法,或者用Priority Queue (Max Heap) 数据结构,注意Java和Python都是最小堆,需要转换一下。

C++版解法一:

class Solution {
public:
	int findKthLargest(vector<int>& nums, int k) {
		return nums[returnXth(nums, 0, nums.size() - 1, k)];
	}

	int returnXth(vector<int>& nums, int head, int tail, int k) {
		int start = head;
		int end = tail;
		srand((unsigned)time(0));
		int pivot = (rand() % (end + 1 - start)) + start;
		swap(nums[start], nums[pivot]);
		pivot = start;
		while (start <= end) {
			while (start <= end && nums[end] >= nums[pivot]) end--;
			if (start <= end && nums[end] < nums[pivot]) {
				swap(nums[pivot], nums[end]);
				pivot = end;
				end--;
			}
			while (start <= end && nums[start] <= nums[pivot]) start++;
			if (start <= end && nums[start] > nums[pivot]) {
				swap(nums[start], nums[pivot]);
				pivot = start;
				start++;
			}
		}
		if (pivot > nums.size() - k) {
			pivot = returnXth(nums, head, pivot - 1, k);
		}
		else if (pivot < nums.size() - k) {
			pivot = returnXth(nums, pivot + 1, tail, k);
		}
		return pivot;
	}
};

C++版解法二:

class Solution {
public:
    int findKthLargest(vector<int>& nums, int k) {
        priority_queue<int> a;
        for(int i = 0; i < nums.size(); i++) {
            a.push(nums[i]);
        }
        
        for(int i = 0; i < k - 1; i++)
            a.pop();
        
        return a.top();
    }
};

Java版解法一:

public class Solution {
    public int findKthLargest(int[] nums, int k) {
        return nums[findXth(nums, 0, nums.length-1, k)];
    }
    
    public int findXth(int[] nums, int head, int tail, int k) {
        int begin = head;
        int end = tail;
        int pivot = begin;
        int temp;
        while(begin <= end) {
            while(begin <= end && nums[end] >= nums[pivot]) end--;
            if(begin <= end && nums[end] < nums[pivot]) {
                temp = nums[pivot];
                nums[pivot] = nums[end];
                nums[end] = temp;
                pivot = end;
                end--;
            }
            while(begin <= end && nums[begin] <= nums[pivot]) begin++;
            if(begin <= end && nums[begin] > nums[pivot]) {
                temp = nums[pivot];
                nums[pivot] = nums[begin];
                nums[begin] = temp;
                pivot = begin;
                begin++;
            }
        }
        if(pivot > nums.length - k) 
            pivot = findXth(nums, head, pivot-1, k);
        else if(pivot < nums.length - k)
            pivot = findXth(nums, pivot+1, tail, k);
        return pivot;
    }
}

Java版解法二:

import java.util.PriorityQueue;

public class Solution {
    public int findKthLargest(int[] nums, int k) {
        PriorityQueue<Integer> heap = new PriorityQueue<>();
        for(int i = 0; i < nums.length; i++)
            heap.add(nums[i]);
        for(int i = 0; i < nums.length - k; i++)
            heap.poll();
        return heap.peek();
    }
}

Python版解法一:

class Solution:
    # @param {integer[]} nums
    # @param {integer} k
    # @return {integer}
    def findKthLargest(self, nums, k):
        return nums[self.findXth(nums, 0, len(nums)-1, k)]
        
    def findXth(self, nums, head, tail, k):
        begin = head
        end = tail
        pivot = head
        while begin <= end:
            while begin <= end and nums[end] >= nums[pivot]:
                end -= 1
            if begin <= end and nums[end] < nums[pivot]:
                nums[end], nums[pivot] = nums[pivot], nums[end]
                pivot = end
                end -= 1
            while begin <= end and nums[begin] <= nums[pivot]:
                begin += 1
            if begin <= end and nums[begin] > nums[pivot]:
                nums[begin], nums[pivot] = nums[pivot], nums[begin]
                pivot = begin
                begin += 1
        if pivot > len(nums) - k:
            pivot = self.findXth(nums, head, pivot-1, k)
        elif pivot < len(nums) - k:
            pivot = self.findXth(nums, pivot+1, tail, k)
        return pivot
        

Python版解法二:

import heapq

class Solution:
    # @param {integer[]} nums
    # @param {integer} k
    # @return {integer}
    def findKthLargest(self, nums, k):
        data = []
        for i in nums:
            heapq.heappush(data, -i)
        for i in range(k-1):
            heapq.heappop(data)
        return -heapq.heappop(data)


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值