自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

老程的技术笔记

NECESSITAS EST INGENII MATER

  • 博客(187)
  • 资源 (7)
  • 收藏
  • 关注

原创 数模电路基础知识 —— 8. PN结与三极管的工作原理

在上一章已经简要介绍过什么是PN结与掺杂工艺,现在我们来进一步看看关于PN节的另外一个重要应用,如何构建出普通三极管,以及更复杂的场效应三极管的。

2022-09-19 15:50:01 272

原创 数模电路基础知识 —— 7. PN结与二极管的工作原理

硅作为今天使用最广泛的半导体材料,被广泛应用在电子、芯片制造、太阳能等产业。那么对于非专业人员来说,半导体又是个什么概念呢。如果你小时候有参加过学校组织的物理实验,应该知道例如石墨、金属、含盐液体,把电极的两端接入这些介质,并且导线的另外一头接入用电器,比如小灯珠后,小灯珠会亮。而接入比如干燥木棒、橡胶棒等介质时,小灯珠不会变亮。所以从小我们大多数人对于导电的理解,是一种绝对化的概念,即某个东西可以导电,某个东西不可以导电。

2022-09-19 14:31:59 195

原创 机器学习知识总结 —— 15. 什么是支持向量机(对偶问题、核技巧)?

核函数是另外一类技巧,是指当数据无法线性分类时,可以通过升维或降纬(不过一般是升纬,因为我们处理数据的过程是从低维度慢慢过渡到高纬度空间)的方式,通过数据自身的某些特点,或者映射,使得数据能够在高纬度空间中可分。上面这段话比较拗口,所以我们来看下面这个例子。例如对于某二维分类问题,对圆点和方块所表示的样本难以使用简单的一维空间中进行区分,因为如果我们要在一维空间中区分圆点和方块,就需要极为复杂的超平面(hyper plane)完成这个分类。注意,对于ML任务来说,我们使用到的函数和方法都应该尽量简单而直接,

2022-08-28 13:02:36 202

原创 机器学习知识总结 —— 14. 什么是支持向量机(基础概念、梯度下降、软间隔、硬间隔)?

文章目录什么是向量什么是支持向量背后的数学思想支持向量的数学定义Hinge Loss 与梯度下降算法软间隔与硬间隔参考资料什么是向量如果从数学的定义出发,所谓「向量」指的是有向线段。但是如果我们从数据科学出发,向量通常指的是某样本的特征表述。举例来说,如果我们有如下一张表,记录了一个人的身高、体重等信息姓名性别身高体重张三男16865李四男17065这种数据通常无法直接用计算机进行处理,所以对数据进行转换后,就可以变成性别身高体重

2022-03-22 23:13:14 1354 2

翻译 论文研读 —— 7. Very Deep Convolutional Networks for Large-Scale Image Recognition (3/3)

文章目录A LOCALISATIONA.1 LOCALISATION CONVNETA.2 LOCALISATION EXPERIMENTSB GENERALISATION OF VERY DEEP FEATURESC PAPER REVISIONSA LOCALISATIONIn the main body of the paper we have considered the classification task of the ILSVRC challenge, and performed a t

2022-02-13 14:55:20 100

原创 数学基础知识总结 —— 13. 什么是回归分析常用的「最小二乘法」

文章目录「最小二乘法」的提出背景从一个简单的例子开始参考资料「最小二乘法」的提出背景最小二乘法通常归功于高斯(Carl Friedrich Gauss,1795),但最小二乘法是由阿德里安-马里·勒让德(Adrien-Marie Legendre)首先发表的。它对应的英文是 least squares method,在大陆地区的翻译一般是最小二乘法,或最小平方法。它是一种对离散数据求拟合,并通过均方差最小的约束条件来达成于目标数据之间最少误差的数学建模方法。用上图进行解释会更明了一些,当我们有一组离

2022-01-30 15:00:24 900

翻译 论文研读 —— 7. Very Deep Convolutional Networks for Large-Scale Image Recognition (2/3)

文章目录3. Classification Framework3.1. Training3.2. Testing3.3. Implementation Details4. Classification Experiments4.1 SINGLE SCALE EVALUATION4.2. MULTI-SCALE EVALUATION4.3. MULTI-CROP EVALUATIO4.4. CONVNET FUSION4.5. COMPARISON WITH THE STATE OF THE ART5. CO

2022-01-29 21:48:43 100

原创 Raspberry系统管理 —— 安装和配置VNC Server

文章目录什么是VNC Server如何启动树莓派的VNC服务安装VNC Viewer没有显示器如何使用VNC什么是VNC Server通常对于Linux来说,我们通常是把它们当作伺服器使用,很少有人会把Linux系统当作个人PC使用。那么在我们家里,如果使用低功耗的树莓派搭建家里的服务器使用时,除了SSH以外,有时候也会有需要使用远程桌面的时候。比方说,有时候像我们偶尔处理图形图像方面的程序时,不仅需要验证它是否在Windows平台上是否运行良好外,也需要看看它是否在Linux服务器上运作正常;又或者你

2022-01-19 20:29:00 587

翻译 论文研读 —— 7. Very Deep Convolutional Networks for Large-Scale Image Recognition (1/3)

文章目录Authors and PublishmentAuthorsBibtexAbstract1. Introduction2. Convnet Configurations2.1. Architecture2.2. Configurations2.3. DiscussionAuthors and PublishmentAuthorsKaren Simonyan / Visual Geometry Group, Department of Engineering Science, Universit

2022-01-18 17:52:40 251

翻译 论文研读 —— 6. ImageNet Classification with Deep Convolutional Neural Networks (3/3)

文章目录6. Results6.1. Qualitative Evaluations7. DiscussionReferences6. ResultsOur results on ILSVRC-2010 are summarized in Table 1. Our network achieves top-1 and top-5 test set error rates of 37.5%37.5\%37.5% and 17.0%17.0\%17.0% 1. The best performance ac

2022-01-17 20:58:49 121

翻译 论文研读 —— 6. ImageNet Classification with Deep Convolutional Neural Networks (2/3)

文章目录3. The Architecture3.1. ReLU Nonlinearity3.2. Training on Multiple GPUs3.3. Local Response Normalization3.4. Overlapping Pooling3.5. Overall Architecture4. Reducing Overfitting4.1. Data Augmentation4.2. Dropout5. Details of learning3. The Architecture

2022-01-17 20:33:51 98

翻译 论文研读 —— 6. ImageNet Classification with Deep Convolutional Neural Networks (1/3)

文章目录Authors and PublishmentAuthorsBibtexAbstract1. Introduction2. The DatasetAuthors and PublishmentAuthorsAlex Krizhevsky / University of TorontoIlya Sutskever / University of TorontoGeoffrey E. Hinton / University of TorontoBibtexKrizhevsky A, S

2022-01-17 19:22:18 381

翻译 论文研读 —— 5. FaceNet A Unified Embedding for Face Recognition and Clustering (3/3)

文章目录5. Experiments5.1. Computation Accuracy Trade-off5.2. Effect of CNN Model5.3. Sensitivity to Image Quality5.4. Embedding Dimensionality5.5. Amount of Training Data5.6. Performance on LFW5.7. Performance on Youtube Faces DB5.8. Face Clustering6. Summar

2022-01-16 19:33:26 196

翻译 论文研读 —— 5. FaceNet A Unified Embedding for Face Recognition and Clustering (2/3)

文章目录3. Method3.1. Triplet Loss3.2. Triplet Selection3.3. Deep Convolutional Networks4. Datasets and Evaluation4.1. Hold-out Test Set4.2. Personal Photos4.3. Academic Datasets3. MethodFaceNet uses a deep convolutional network. We discuss two different cor

2022-01-16 17:00:10 56

原创 数模电路基础知识 —— 6. 常见电路符号说明(晶闸管)

在国内它被称为 可控硅,但是海外华人地区则普遍翻译为 晶闸管,它的英文名叫 Thyristor,是一种早期出现的用于控制电流单向导通的器件。与一般的二极管相比,它可以对导通电流进行控制。晶闸管具有以小电流(电压)控制大电流(电压)作用,并体积小、轻、功耗低、效率高、开关迅速等优点,广泛用于无触点开关、可控整流、逆变、调光、调压、调速等方面1。其电路符号一般表示如下要想理解它的工作原理,可以看看它的等效电路:也就是两个三极管彼此相连,其运行方式可以跟EE专业里提到的通过三极管做的 信号放大电路 进行

2022-01-15 16:01:11 556

原创 数模电路基础知识 —— 5. 常见电路符号说明(三极管)

文章目录0. 什么是三极管1. 双极性晶体管(BJT)2. 场效应晶体管(FET)2.1. 结型场效应管(JFET)2.2. 绝缘栅极场效晶体管(IGFET)0. 什么是三极管说到三极管,它其实是一大类特制的晶体管。由于掺杂和微结构不同,比如NPN型、PNP型、N沟道型、P沟道型,所以往往根据它的结构和功能做了一个区分,比如 「双极性晶体管(Bipolar Junction Transistor)」、「场效应晶体管 (Field Effect Transistor)」 等不同子类。在电路当中,广义的三

2022-01-15 15:39:11 835

原创 机器学习知识总结 —— 13. L1与L2正则是什么意思?

文章目录先从拉格朗日约束「Lagrange Constraint」开始L1正则与L2正则「L1 and L2 Regularization」先从拉格朗日约束「Lagrange Constraint」开始要理解L1、L2正则是什么含义,我们就要回归最基础的一个概念——拉格朗日数乘。提出拉格朗日数乘的根本原因,就是寻找多元函数在其变量受到一个或多个约束条件限制时的极值问题。就是把 nnn 个变量与 kkk 个约束条件转化为 n+λkn + \lambda kn+λk 的方程组问题。所以,从拉格朗日数乘(或

2022-01-13 17:11:23 236

翻译 论文研读 —— 5. FaceNet A Unified Embedding for Face Recognition and Clustering (1/3)

文章目录Authors and PublishmentAuthorsBibtexCategories0. Abstract1. Introduction2. Related WorkAuthors and PublishmentAuthorsFlorian Schroff / Google Inc.Dmitry Kalenichenko / Google Inc.James Philbin / Google Inc.BibtexSchroff F, Kalenichenko D, Phi

2022-01-12 19:34:53 111

原创 机器学习知识总结 —— 12. 机器与深度学习中常用术语 [R-Y]

文章目录Realtime / 实时Recall / 召回率Region Attribute / 区域属性Regression / 回归Regularization / 正则化Remap / 重映射Resolution / 分辨率Runtime Environment / 运行环境SageMakerSegmentation / 分割Self Adversarial Training / 自我对抗训练Session / 对话Split / 数据分离SSD / 单发检测器State of the Art / 最先

2022-01-10 20:22:00 293

原创 数模电路基础知识 —— 4. 常见电路符号说明(二极管)

文章目录1. 二极管1.1. TVS二极管1.2. 肖特基二极管(Schottky diode)1.3. 隧道二极管(Tunnel Diode)1.4. 变容二极管1. 二极管普通的二极管的定义是正向导通,反向截止,和电阻器相似,由于设计物理结构不同,或掺杂稀土材料不同,在普通的二极管基础上,还衍生出了诸如光电二极管、齐纳二极管等特殊的二极管。先说比较常见的几种:符号名称说明普通二极管(Diode)对电流能够单向截止,比如防止电流倒灌,电路保护,整流中比较常见。齐纳

2022-01-08 23:18:24 1822

原创 机器学习知识总结 —— 12. 机器与深度学习中常用术语 [K-P]

文章目录Keypoint Detection / 关键点检测Label / 标签Layer / 网络层Learning Rate / 学习率LiDARLocalization / 定位Loss Function / 损失函数Machine Learning / 机器学习mAP / 平均精度Memory Footprint / 内存占用Metadata / 元数据Metrics / 指标Mixed Precision / 混合精度Mobile Deployment / 移动部署Model / 模型Model

2022-01-08 21:39:31 1157

原创 机器学习知识总结 —— 12. 机器与深度学习中常用术语 [D-J]

文章目录DarknetData / 数据Dataset / 数据集Deploy / 部署Differentiable / 可微的Distributed / 分布式Domain Specific / 特定领域Early Stopping / 提前停止Edge Deployment / 边缘部署EMA / 指数移动平均Epochs / 代EXIFExport / 导出F1False Negative / 漏测率False Positive / 误检率Family / 族FastAIFeature / 特征Fea

2022-01-07 22:07:42 1704

原创 机器学习知识总结 —— 12. 机器与深度学习中常用术语 [A-C]

文章目录Ablation Study / 部分切除学习Accuracy / 精确度Activation / 激活函数Anchor Box / 锚箱,边界框Annotation / 标记Annotation Format / 标记格式Annotation Group / 标记组Architecture / 架构AUC / 曲线下面积Augmentation / 增加训练集AutoMLBackbone / 主干网络Backprop / Back propagation / 反向传播Bag of Freebies

2022-01-07 18:00:49 790

翻译 论文研读 —— 4. You Only Look Once Unified, Real-Time Object Detection (3/3)

Comparison to Other Detection SystemsObject detection is a core problem in computer vision. Detection pipelines generally start by extracting a set of robust features from input images (Haar [25], SIFT [23], HOG [4], convolutional features [6]). Then, c.

2022-01-06 16:00:39 391

原创 数模电路基础知识 —— 3. 常见电路符号说明(电容、电阻、电感)

文章目录1. 电容1.1. 无极性电容1.2. 有极性电容2. 电阻3. 电感1. 电容电容是电路中的三大基本元件,其符号通常标识为 C,单位是 法拉。按电容的按材料和设计,一般有「无极性电容」、「有极性电容」、「可调电容」、「可变电容器」这几种不同类型。符号名称说明有极性电容(Polarised Capacitor)比较常见而且便宜的电容,电荷容量较大,电容是有极性的,当电极相反时能够承受一定的反向电压,但是设计电路时应该尽量避免出现这样的情况,或换上无极性电容。无

2022-01-06 01:28:02 3580

原创 数模电路基础知识 —— 2. 常见电路符号说明 (导线、电源、接地、变压器与保险丝)

文章目录1. 导线1.1. 基本的连接方式1.2. 带有标签的导线1.3. 总线1.4. 悬空2. 电源2.1. 直流、交流电2.2. 电池供电2.3. 接地2.4. 太阳能2.5. 保险丝2.6. 变压器1. 导线1.1. 基本的连接方式接线,也就是电路组建和组建的连接,对应于实际中就是电线、或PCB中的印刷线路。常见的接线有三种。符号名称说明导线 (Wire)最基本的组建与组建间的连接方式。连接的导线 (Connected Wire)两根导线彼此物理上连接在了

2022-01-05 15:57:23 5632

翻译 论文研读 —— 4. You Only Look Once Unified, Real-Time Object Detection (2/3)

文章目录2. Unified Detection2.1. Network Design2.2. Training2.3. Inference2.4. Limitations of YOLO2. Unified DetectionWe unify the separate components of object detection into a single neural network. Our network uses features from the entire image to predic

2022-01-05 10:13:30 27

翻译 论文研读 —— 4. You Only Look Once Unified, Real-Time Object Detection (1/3)

文章目录Authors and PublishmentAuthorsBibtexCategoriesAbstract1. IntroductionAuthors and PublishmentAuthorsJoseph Redmon / University of WashingtonSantosh Divvala / University of Washington, Allen Institute for AIRoss Girshick / Facebook AI ResearchAli

2022-01-04 20:05:49 53

原创 Pytorch与强化学习 —— 1. 如何实现一个简单的Q Learning算法

文章目录1. 什么是强化学习(Reinforcement Learning)1.1. 我们从一个小游戏开始1.2. 先从理解游戏规则开始2. 最简单的强化学习算法——Q Learning2.1. 奖励函数2.2. 最佳未来估计策略2.3. 游戏过程3. 代码实现3.1. Q Table3.2. Rule Table3.3. 计算期望3.3. 环境交互3.4. 完整的模型3.5. 运行结果1. 什么是强化学习(Reinforcement Learning)1.1. 我们从一个小游戏开始如果你是第一次听说

2022-01-03 14:05:37 4227 1

翻译 论文研读 —— 3. Convergence of Q-learning: a simple proof

Authors and PublishmentAuthorsFrancisco S. Melo / Institute for Systems and Robotics, Lisboa, PORTUGALBibtexMelo F S. Convergence of Q-learning: A simple proof[J]. Institute Of Systems and Robotics, Tech. Rep, 2001: 1-4.1 PreliminariesWe denote a M

2021-12-30 21:06:23 169

原创 机器学习知识总结 —— 10. 评价模型的优劣方法与混淆矩阵

文章目录1. 如何评价一个模型的好坏2. 与「混淆矩阵」有关的几个评价指标2.1. 查准率/准确率2.2. 查全率/召回率/查出率3. 什么是PR曲线1. 如何评价一个模型的好坏评价一个机器学习模型的好坏,通常需要一个具体的量化指标。在展开我们后面的内容前,我们先考虑这样一个场景。假设我们有三类预测目标,但是我们做了可能有十种不同的模型,现在怎么评判某个模型优于另外一个模型呢?回答这个问题之前,我们可以先把预测和目标做成一张表,然后把计算结果填到这张表里面,于是对于某模型A:从左往右分别是1,2,

2021-12-28 14:55:14 997

原创 数学基础知识总结 —— 12. 求极限的重要工具「洛必达法则」

文章目录极限的定义「洛必达法则」的限制条件极限的定义先简单的复习一下极限:极限的定义:设函数 f(x)f(x)f(x) 在点 x0x_0x0​ 的某一去心邻域内有定义。 如果存在常数 AAA,对于任意给定的 ϵ>0\epsilon >0ϵ>0,必然存在 δ>0\delta > 0δ>0,使得当 0<∣x−x0∣<δ0 < \left| x - x_{0} \right| < \delta0<∣x−x0​∣<δ 时,有∣f(x)

2021-12-26 21:53:40 449

原创 数学基础知识总结 —— 11. 什么是泰勒公式与泰勒级数

文章目录1. 什么是「近似逼近」?2. 什么是「泰勒公式」?2. 函数的一般泰勒展开式3. 如何求函数在点X的值4. 常见泰勒展开公式4.1. 自然指数函数4.2. 正弦函数4.3. 余弦函数4.4. 1/(1+x)4.5. 1/(1-x)4.6. 对数函数4.7. 幂函数1. 什么是「近似逼近」?我们在遇到一个复杂的光滑的函数,往往一时半会找不到合适的函数解析式去表示它(例如下面这种情况)。亦或者需要求解复杂的函数图像在某一点P的值(例如得到一段数据,推测它在未来某一点的值),这个时候既有的知识

2021-12-25 22:22:33 661

原创 机器学习知识总结 —— 11. 关于目标检测中的IoU是什么

文章目录1. 什么是 IoU2. 什么是「边界框(bounding box)」3. 如何计算IoU1. 什么是 IoU在深度学习的相关任务中,尤其当涉及到目标识别这一类的任务时,总能在论文或博客中看到或者听到 IoU,那么 IoU 指的是什么,它又是如何计算的呢?IoU 的全称是「Intersection of Union」对应的中文是「交并比」,也就是交集与并集的比。我们来看看示例图:它表示的是我们的检测区域与目标区域的重合程度,所以自然它的取值范围在 [0,1][0, 1][0,1]。2.

2021-12-25 01:59:38 2339

原创 复变函数 —— 5. 什么是初等复变函数

文章目录关于什么是初等函数指数函数对数函数例1幂函数例1三角函数关于什么是初等函数以高等数学,或者更高一级的解析数学的角度看,所谓的初等函数是由 「幂函数 (power function)」「指数函数 (exponential function)」「 对数函数 (logarithmic function)」「三角函数 (trigonometric function)」「反三角函数 (inverse trigonometric function)」与常数经过有限次的有理运算(比如,加、减、乘、除、乘方、开

2021-12-24 14:39:33 703

原创 数学基础知识总结 —— 10. 什么是积分换元法

文章目录从链式法则出发第一类换元法例题第二类换元法总结在我们求解微积分公式时,经常会遇到积分公式难以求解的情况,所以这个时候我们通常需要用到类似「映射」的技巧,把函数积分项或者积分域换成相对容易的形式,这一章节我们来复习一下高数教材中常提到的两类换元法。从链式法则出发无论对于第一类还是第二类换元法,都遵循链式法则,例如对原函数为 f(g(x))f(g(x))f(g(x)) 求导,它的导数有如下定义:(f∘g(x))′=f′(g(x))g′(x)(f \circ g(x))'=f'(g(x)) g'

2021-12-20 14:30:26 283

原创 Ubuntu系统管理 —— 使用SSH及SCP实现远程登陆与数据传输

文章目录SSHSSH Server 的安装通过指定端口连接远程服务远程免密登陆SCP将数据从本地传输至远程服务器将数据从远程服务器拉取到本地指定端口方法SSHSSH Server 的安装通过指定端口连接远程服务远程免密登陆SCP将数据从本地传输至远程服务器将数据从远程服务器拉取到本地指定端口方法...

2021-12-16 22:07:39 1674

原创 OpenCV API使用笔记 —— 4. 如何保存视频文件

文章目录写入图片帧信息C/CPP示例Python示例在《OpenCV API使用笔记 —— 1. 如何打开摄像头或视频文件》 介绍过使用「VideoCapture」类,可以打开摄像头或视频文件,如果数据经过处理后,我们希望保存这些数据时,又该怎么做呢。写入图片帧信息我们这里主要用到一个名为 VideoWriter 的类,它可以帮助我们达成以上目标。现在来看看「VideoWriter」类的原型:cv::VideoWriter::VideoWriter();cv::VideoWriter::Vide

2021-12-15 11:38:58 2828

原创 复变函数 —— 4. 什么是调和函数

文章目录1. 调和函数的定义例1.例2.1. 调和函数的定义在《浅谈矢量场 —— 1. 梯度、散度与拉普拉斯算子》 这篇文章中提到过「拉普拉斯算子」,它的表达形式一般如下:Δ=∇2=∂2∂x2+∂2∂y2+∂2∂z2\Delta = \nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}+\frac{\partial^2}{\partial z^2}Δ=∇2=∂x2∂2​+∂y2∂2​+∂z2∂2​

2021-12-11 22:32:55 2386 2

原创 Ubuntu系统管理 ——使用dpkg安装、查看、卸载软件包

文章目录dpkg 安装软件包dpkg 查看已安装软件包dpkg 删除已安装软件包dpkg 查看软件包的安装位置对于Ubuntu来说,使用dpkg安装软件包是非常常用的一种操作。但是时间久了以后,我们可能会忘记当初安装了哪些软件包,以及如何安全的卸载软件包。在这一篇文章里,将告诉你这些平时不太注意到的小技巧。dpkg 安装软件包除了使用 「apt」工具安装软件外,对于Debian/Ubuntu 这类的Linux系统,也可以使用「deb」包安装软件,例如:$ sudo dpkg -i fping_4.2

2021-12-11 20:57:29 5294

TDK MPU6050 数据表.pdf

TDK MPU 6050 数据表

2021-11-28

高数微积分常用积分公式表

一些常用和不常用的积分表

2021-11-11

德仪 SN74HC595 数据表.pdf

德州仪器74HC595位移寄存器数据表

2021-11-01

德仪 INA333 数据表.pdf

德仪 INA333 数据表

2021-11-01

NAME 常见姓名数据集

中文、英文、日文、阿拉伯文等常见姓名英语拼写,NLP方向学习用数据集。

2021-08-30

MNIST 手写数字数据集

机器学习、深度学习常用标准数据集之一

2021-08-23

标准正态分布积分表.pdf

正态分布积分表,查表;用于快速计算正态分布积分、概率分析……

2021-07-28

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除