官方文档:https://github.com/microsoft/nni
(本文介绍均基于windows系统,Linux和Mac请参考GitHub的官方文档)
一、介绍
NNI (Neural Network Intelligence) 是一个工具包,可有效的帮助用户设计并调优机器学习模型的神经网络架构,复杂系统的参数(如超参)等。 NNI 的特性包括:易于使用,可扩展,灵活,高效。
NNI的体系结构:
相关概念:
Experiment(实验):实验是一次找到模型的最佳超参组合,或最好的神经网络架构的任务。 它由 Trial 和自动机器学习算法所组成。
搜索空间:是模型调优的范围。 例如,超参的取值范围。
Configuration(配置):配置是来自搜索空间的一个参数实例,每个超参都会有一个特定的值。
Trial: Trial 是一次尝试,它会使用某组配置(例如,一组超参值,或者特定的神经网络架构)。 Trial 会基于提供的配置来运行。
Tuner: Tuner 是一个自动机器学习算法,