少儿Python每日一题(9):约瑟夫环

原题解答

本次的题目如下所示(原题出处:蓝桥杯)

【编程实现】

有n个人围成一个圈,按顺序排好号。然后从第一个人开始报数(从1到3
报数),报到3的人退出圈子,然后继续从1到3报数,直到最后留下一个
人游戏结束,问最后留下的是原来第几号。
输入描述:输入一个正整数n
输出描述:输出最后留下的是原来的第几号
【样例输入】
5
【样例输出】
4

本题是算法中经典的约瑟夫环的问题。我们知道,列表类型是一个线性的数据类型,从第一个元素遍历到最后一个元素则结束。而圆圈是没有终点的,以某一个元素为起点,绕一圈还会回到这个元素。

线性
线性数据类型

 

约瑟夫环

 从图中我们可以看出,当到达最后一个元素后,再往后遍历回到第一个元素。这就是围成圈遍历的特征。当对它进行遍历时,是永远没有终点的,如果将遍历写成代码将成为无限循环:

i = 0
while True:
    print(a[i])
    i += 1
    if i == len(a):
        i = 0

解决了以上问题后,我们再来看这道题的解决思路。题目中提到从1到3报数,报到3就出局。那么很明显,序号是3的倍数的元素就会被删除;序号不是3的倍数则访问下一个元素。这里我们要注意一下如果删除元素后,后面一个元素的索引自动向前移动了变成当前的索引了。

循环结束的条件是:剩下一个元素。因此该程序应当使用while循环,循环的条件为列表长度大于1。

由此我们可以得到程序的代码如下:

n = int(input())
p = list(range(1, n + 1))
o = 1 # 报数计数用
i = 0 # 列表索引
while len(p) > 1:
    if o % 3 == 0: # 报到3的倍数
        p.pop(i) # 出局
    else:
        i += 1 # 下次遍历下一个元素
    if i == len(p): # 到达最后一个元素,回到第一个元素
        i = 0
    o += 1 # 下一轮报数+1
print(p[0]) # 列表中剩下的唯一的元素就是我们的答案

本题拓展

本题考查的是约瑟夫环问题,题目难度★★★★

此问题经常会换一个考法,列出每次被淘汰的人序号的顺序:

【编程实现】

有n个人围成一个圈,按顺序排好号。然后从第一个人开始报数(从1到3
报数),报到3的人退出圈子,然后继续从1到3报数,直到所有人退出游戏结束,问退出的人的顺序是什么。
输入描述:输入一个正整数n
输出描述:输出被淘汰的人的顺序,以空格隔开
【样例输入】
5
【样例输出】
3 1 5 2 4

本题我们完全可以按照原来的思路,将每次被淘汰的人存入一个列表中,最后打印出来,代码如下:

n = int(input())
p = list(range(1, n + 1))
q = []
o = 1  # 报数计数用
i = 0  # 列表索引
while len(p):
    if o % 3 == 0:  # 报到3的倍数
        q.append(p.pop(i))  # 出局
    else:
        i += 1  # 下次遍历下一个元素
    if i == len(p):  # 到达最后一个元素,回到第一个元素
        i = 0
    o += 1  # 下一轮报数+1
print(*q)

除了按照原先的思路解决该问题,我们还可以使用递归的思想解决该问题,该方法适合学有余力的同学研究:

我们假设有10个人,
1 2 3 4 5 6 7 8 9 10
第一个人出列后变成
1 2 4 5 6 7 8 9 10

4 5 6 7 8 9 10 1 2(a)
如果我们把它转换为
1 2 3 4 5 6 7 8 9(b)
就会发现
(b + 3) % 10就转换成了a。

因此,我们求出第9个人被淘汰的编号,最后进行转换就能得到第10个被淘汰的人的编号了。

假设josef(n, m, d)为n个人的环,报数为m,第d个人被淘汰,那么josef(10, 3, 10)就是我们想要的结果。

当d = 1时,josef(n,m,d) = (m+n-1) % n
当d != 1时,josef(n,m,d) = (josef(n-1,m,d-1)+m) % n

我们得到程序的代码如下:

def josef(n, m, d=None):
    if d is None:
        d = n

    if(d == 1):
        return (m - 1) % n
    else:
        return (josef(n-1, m, d-1) + m) % n


i = 1
n = int(input())
while i <= n:
    print(josef(n, 3, i) + 1)
    i += 1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

凤城老人

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值