原题解答
本次的题目如下所示(原题出处:蓝桥杯)
【编程实现】
有n个人围成一个圈,按顺序排好号。然后从第一个人开始报数(从1到3
报数),报到3的人退出圈子,然后继续从1到3报数,直到最后留下一个
人游戏结束,问最后留下的是原来第几号。
输入描述:输入一个正整数n
输出描述:输出最后留下的是原来的第几号
【样例输入】
5
【样例输出】
4
本题是算法中经典的约瑟夫环的问题。我们知道,列表类型是一个线性的数据类型,从第一个元素遍历到最后一个元素则结束。而圆圈是没有终点的,以某一个元素为起点,绕一圈还会回到这个元素。
从图中我们可以看出,当到达最后一个元素后,再往后遍历回到第一个元素。这就是围成圈遍历的特征。当对它进行遍历时,是永远没有终点的,如果将遍历写成代码将成为无限循环:
i = 0
while True:
print(a[i])
i += 1
if i == len(a):
i = 0
解决了以上问题后,我们再来看这道题的解决思路。题目中提到从1到3报数,报到3就出局。那么很明显,序号是3的倍数的元素就会被删除;序号不是3的倍数则访问下一个元素。这里我们要注意一下如果删除元素后,后面一个元素的索引自动向前移动了变成当前的索引了。
循环结束的条件是:剩下一个元素。因此该程序应当使用while循环,循环的条件为列表长度大于1。
由此我们可以得到程序的代码如下:
n = int(input())
p = list(range(1, n + 1))
o = 1 # 报数计数用
i = 0 # 列表索引
while len(p) > 1:
if o % 3 == 0: # 报到3的倍数
p.pop(i) # 出局
else:
i += 1 # 下次遍历下一个元素
if i == len(p): # 到达最后一个元素,回到第一个元素
i = 0
o += 1 # 下一轮报数+1
print(p[0]) # 列表中剩下的唯一的元素就是我们的答案
本题拓展
本题考查的是约瑟夫环问题,题目难度★★★★
此问题经常会换一个考法,列出每次被淘汰的人序号的顺序:
【编程实现】
有n个人围成一个圈,按顺序排好号。然后从第一个人开始报数(从1到3
报数),报到3的人退出圈子,然后继续从1到3报数,直到所有人退出游戏结束,问退出的人的顺序是什么。
输入描述:输入一个正整数n
输出描述:输出被淘汰的人的顺序,以空格隔开
【样例输入】
5
【样例输出】
3 1 5 2 4
本题我们完全可以按照原来的思路,将每次被淘汰的人存入一个列表中,最后打印出来,代码如下:
n = int(input())
p = list(range(1, n + 1))
q = []
o = 1 # 报数计数用
i = 0 # 列表索引
while len(p):
if o % 3 == 0: # 报到3的倍数
q.append(p.pop(i)) # 出局
else:
i += 1 # 下次遍历下一个元素
if i == len(p): # 到达最后一个元素,回到第一个元素
i = 0
o += 1 # 下一轮报数+1
print(*q)
除了按照原先的思路解决该问题,我们还可以使用递归的思想解决该问题,该方法适合学有余力的同学研究:
我们假设有10个人,
1 2 3 4 5 6 7 8 9 10
第一个人出列后变成
1 2 4 5 6 7 8 9 10
即
4 5 6 7 8 9 10 1 2(a)
如果我们把它转换为
1 2 3 4 5 6 7 8 9(b)
就会发现
(b + 3) % 10就转换成了a。
因此,我们求出第9个人被淘汰的编号,最后进行转换就能得到第10个被淘汰的人的编号了。
假设josef(n, m, d)为n个人的环,报数为m,第d个人被淘汰,那么josef(10, 3, 10)就是我们想要的结果。
当d = 1时,josef(n,m,d) = (m+n-1) % n
当d != 1时,josef(n,m,d) = (josef(n-1,m,d-1)+m) % n
我们得到程序的代码如下:
def josef(n, m, d=None):
if d is None:
d = n
if(d == 1):
return (m - 1) % n
else:
return (josef(n-1, m, d-1) + m) % n
i = 1
n = int(input())
while i <= n:
print(josef(n, 3, i) + 1)
i += 1