《数据结构与算法分析》上的一道练习题,原题要求使用类似于多项式运算的方法,编写任意精度整数运算程序,计算在2^4000中0到9的分布。大概说一下自己的想法吧,如有错误欢迎批评指正!
这题思路还是容易的,链表结构如下,每个链表单元保存大整数的一位即可,做乘法时从个位开始相乘,如果产生进位则暂存用以加到高位。对于X^N,若底数X有M位(十进制),则算法复杂度为O(M*N^2)。
struct Node;
typedef struct Node *PtrToNode;
typedef PtrToNode List;
typedef PtrToNode Position;
struct Node
{
int Element;
PtrToNode Next;
};
上面的思路看着挺自然的,但仔细一想,发现也有不妥之处。因为链表中元素的数据类型是int32的,如果只用来保存一个10以内的数是很大的浪费,而且乘法的过程中会频繁的产生进位,导致算法效率较低。
解决办法也很简单,改变一下链表中数据的进制,选取10000进制(为了在做乘法时不至于溢出,而且在输出十进制数时只要补零就可以了),问题就迎刃而解了。
用C实现了上述算法后,发现还是比较稳的,估算了一下,相对于十进制的算法,速度可以提升4倍左右(为什么??)。但有一点,就是底数X不能太大,最大只能取大概5位数,否则乘法时就会发生溢出,这样就很不开心了,为了能算更大的数(下面纯粹是为了好玩),我把链表里数的数据类型改成了:
struct Node
{
unsigned long long