使用线性回归模型预测黄金ETF价格

代码如下

# 用于数据处理
import numpy as np
import pandas as pd
# 用于获取数据
import akshare as ak
# 导入线性回归模型
from sklearn.linear_model import LinearRegression
# 导入画图库、设置主题和中文显示
import matplotlib.pyplot as plt


import re

plt.style.use('seaborn-darkgrid')
plt.style.use('seaborn-v0_8-darkgrid')
plt.rcParams['font.sans-serif'] = ['SimHei'] # 中文显示
plt.rcParams['axes.unicode_minus'] = False   # 负数显示
# 设置忽略警告
import warnings
warnings.filterwarnings('ignore')
from datetime import datetime


# 获取黄金ETF的历史行情数据
etf_data = ak.fund_etf_hist_em(symbol='518880', period='daily', start_date='20130801', end_date='20240517')
# 只需要收盘价序列
Df = etf_data[['收盘']].rename(columns={'收盘':'Close'})
# 将Index设置为datetime格式的日期
Df.index = pd.to_datetime(etf_data['日期']).tolist()
# 去除空值
Df = Df.dropna()
# 画出黄金ETF的价格走势图
Df.Close.plot(figsize
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值