7-2 汉诺塔II
分数 5
作者 蔡尚真
单位 绍兴文理学院元培学院
经典的汉诺塔问题经常作为一个递归的经典例题存在。可能有人并不知道汉诺塔问题的典故。汉诺塔来源于印度传说的一个故事,上帝创造世界时作了三根金刚石柱子,在一根柱子上从下往上按大小顺序摞着64片黄金圆盘。上帝命令婆罗门把圆盘从下面开始按大小顺序重新摆放在另一根柱子上。并且规定,在小圆盘上不能放大圆盘,在三根柱子之间一回只能移动一个圆盘。有预言说,这件事完成时宇宙会在一瞬间闪电式毁灭。也有人相信婆罗门至今仍在一刻不停地搬动着圆盘。恩,当然这个传说并不可信,如今汉诺塔更多的是作为一个玩具存在。Gardon就收到了一个汉诺塔玩具作为生日礼物。
Gardon是个怕麻烦的人(恩,就是爱偷懒的人),很显然将64个圆盘逐一搬动直到所有的盘子都到达第三个柱子上很困难,所以Gardon决定作个小弊,他又找来了一根一模一样的柱子,通过这个柱子来更快的把所有的盘子移到第三个柱子上。下面的问题就是:当Gardon在一次游戏中使用了N个盘子时,他需要多少次移动才能把他们都移到第三个柱子上?很显然,在没有第四个柱子时,问题的解是2^N-1,但现在有了这个柱子的帮助,又该是多少呢?
输入格式:
包含多组数据,每个数据一行,是盘子的数目N(1<=N<=64)。
输出格式:
对于每组数据,输出一个数,到达目标需要的最少的移动数。
输入样例:
在这里给出一组输入。例如:
1
3
12
输出样例:
在这里给出相应的输出。例如:
1
5
81
#include <bits/stdc++.h>
using namespace std;
int ht2(int n);
int main() {
int n;
while (cin >> n) {
cout << ht2(n) << endl;
}
return 0;
}
int ht2(int n) {
/*
ht2(n) 返回用两个辅助柱把 n 个盘子移到目标柱所需要的最少的移动数。
n == 1时,直接移,最少移动数为 1
n == 2时,先移最上面的盘子到任意一个辅助柱,再把底下的盘子移到目标柱, 最后将辅助柱上的盘子移到目标柱,最少移动数为 3
n > 2时,先将 X(1 < x < n) 个盘子用一个目标柱,一个辅助柱移到另一个辅助柱,根据函数的定义这一步的移动数为 ht2(x)。
再将剩下的 n-x 个盘子用另一个辅助柱移到目标柱(不能用之前的辅助柱,因为剩下的盘子都比之前移到那的盘子大)。
此时问题就变成了一个辅助柱移盘子的问题,利用公式可得这一步的移动数为 pow(2, n-x) - 1,即 2 的 n-x 次方减一。
最后再将第一步移到辅助柱的盘子利用起始柱和另一个辅助柱作为两个辅助柱移到目标柱上,这一步和第一步一样,移动数为 ht2(x)。
最后把这三步的移动数加起来就是总的移动数,总移动数为 2*ht2(x) + pow(2, n-x) - 1;
易得,当 n > 2 时,总移动数和 x 的取值有关,所以要遍历 x 的所有取值找最小解。
*/
if (n == 1) {
return 1;
} else if (n == 2) {
return 3; // n == 1 或 n == 2 的时候直接返回结果即可。
} else {
int f[n+1]; // f[n] 即代表 ht2(n)。
f[1] = 1;
f[2] = 3; // 把 1 和 2 这两种基本情况写进去。
for (int i=3; i <= n; i++) { // 第一层循环是求 f(3) - f(n) 的值。
int min = 999999; // min 代表最小移动数,初始值给一个随机的很大的数就行。
for (int j=1; j < i; j++) { // 第二层循环是遍历 x 的值,求最小移动数,即 min 。
if (2*f[j] + pow(2, i-j) -1 < min) {
min = 2*f[j] + pow(2, i-j) -1;
}
}
f[i] = min; // 将求得的最小移动数写进去。
}
return f[n]; // 直接返回 f[n] 即可,因为 f[n] 即代表 ht2(n)。
}
}