CodeForces 743D Chloe and pleasant prizes

题意: 对于给定的一棵树,每个节点上有个权重,问如何挑选两个节点,使得这两个节点的子树没有重合的节点,且其子树的权重之和最大。
思路: 两个节点的子树没有重合的节点,比较显然的想法是这两个节点 a,b ,不能互为根节点。
那么这个问题就变成了如何挑选两个不重合的子树的最大值。这个是可以用树形DP来解决。对于某个节点 u ,他有两个值,一个是cot[u]=ki=0cot[v],另一个是 mxn[u]=max(cot[v]) ,我们只需要用一个dfs将每个节点的 cot,mxn ,求出,然后对每个节点的子节点找一组合法解,合法解的条件是该节点有两个及以上的子节点,然后我们维护结果即可。

#include <cstdio>
#include <string>
#include<iostream>
#include<vector>
#include <stack>
#include <queue>
#include <map>
#include <cstdlib>
#include<string.h>
#include <cstring>
#include <ctime>
#include <algorithm>
#include <set>

using namespace std;

typedef long long ll;
typedef pair<int, int>pii;
typedef pair<ll, ll> pll;
typedef pair<int, ll> pil;
typedef vector<vector<ll> >vvi;
typedef vector<ll> vi;

const int MAXN = 2 * 100000 + 500;
const int MAXM = 5 * 100000 + 500;
struct Edge
{
    int to, next;
}edge[MAXM];

int head[MAXN], tot;
ll mxn[MAXN];
ll cot[MAXN];
ll a[MAXN];

void addedge(int u, int v)
{
    edge[tot].to = v;
    edge[tot].next = head[u];
    head[u] = tot++;
}

void init()
{
    memset(cot, 0, sizeof cot);
    tot = 0;
    memset(head, -1, sizeof head);
}

int flag = 0;
ll ans = 0;
void dfs(int u, int fa)
{
    cot[u] = a[u];
    int f1 = 0;
    mxn[u] = 0;
    for (int i = head[u]; i != -1; i = edge[i].next)
    {
        int v = edge[i].to;
        if (v == fa)continue;
        dfs(v, u);
        if (f1)mxn[u] = max(mxn[u], mxn[v]);
        else mxn[u] = mxn[v], f1 = 1;
        cot[u] += cot[v];
    }
    vector<ll>gao;
    for (int i = head[u]; i != -1; i = edge[i].next)
        if(edge[i].to!=fa)gao.push_back(mxn[edge[i].to]);
    sort(gao.begin(), gao.end());
    if (gao.size() >= 2)
    {
        if (flag == 0)ans = gao[gao.size() - 1] + gao[gao.size() - 2],flag=1;
        else ans = max(ans, gao[gao.size() - 1] + gao[gao.size() - 2]);
    }
    if (!f1)mxn[u] = a[u];
    mxn[u] = max(cot[u], mxn[u]);
}


int main()
{
    int n;
    cin >> n;
    init();
    for (int i = 0; i < n; i++)
    {
        scanf("%I64d", a + i + 1);
    }
    for (int i = 0; i < n - 1; i++)
    {
        int u, v;
        scanf("%d%d", &u, &v);
        addedge(u, v);
        addedge(v, u);
    }
    dfs(1, -1);
    vector<ll>gao;
    for (int i = head[1]; i != -1; i = edge[i].next)
        gao.push_back(mxn[edge[i].to]);
    sort(gao.begin(), gao.end());
    if (gao.size() >= 2)
    {
        if (flag == 0)ans = gao[gao.size() - 1] + gao[gao.size() - 2],flag=1;
        else ans = max(ans, gao[gao.size() - 1] + gao[gao.size() - 2]);
    }
    if (!flag)puts("Impossible");
    else printf("%I64d\n", ans);
    //system("pause");
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值