题意: 对于给定的一棵树,每个节点上有个权重,问如何挑选两个节点,使得这两个节点的子树没有重合的节点,且其子树的权重之和最大。
思路: 两个节点的子树没有重合的节点,比较显然的想法是这两个节点
a,b
,不能互为根节点。
那么这个问题就变成了如何挑选两个不重合的子树的最大值。这个是可以用树形DP来解决。对于某个节点
u
,他有两个值,一个是
#include <cstdio>
#include <string>
#include<iostream>
#include<vector>
#include <stack>
#include <queue>
#include <map>
#include <cstdlib>
#include<string.h>
#include <cstring>
#include <ctime>
#include <algorithm>
#include <set>
using namespace std;
typedef long long ll;
typedef pair<int, int>pii;
typedef pair<ll, ll> pll;
typedef pair<int, ll> pil;
typedef vector<vector<ll> >vvi;
typedef vector<ll> vi;
const int MAXN = 2 * 100000 + 500;
const int MAXM = 5 * 100000 + 500;
struct Edge
{
int to, next;
}edge[MAXM];
int head[MAXN], tot;
ll mxn[MAXN];
ll cot[MAXN];
ll a[MAXN];
void addedge(int u, int v)
{
edge[tot].to = v;
edge[tot].next = head[u];
head[u] = tot++;
}
void init()
{
memset(cot, 0, sizeof cot);
tot = 0;
memset(head, -1, sizeof head);
}
int flag = 0;
ll ans = 0;
void dfs(int u, int fa)
{
cot[u] = a[u];
int f1 = 0;
mxn[u] = 0;
for (int i = head[u]; i != -1; i = edge[i].next)
{
int v = edge[i].to;
if (v == fa)continue;
dfs(v, u);
if (f1)mxn[u] = max(mxn[u], mxn[v]);
else mxn[u] = mxn[v], f1 = 1;
cot[u] += cot[v];
}
vector<ll>gao;
for (int i = head[u]; i != -1; i = edge[i].next)
if(edge[i].to!=fa)gao.push_back(mxn[edge[i].to]);
sort(gao.begin(), gao.end());
if (gao.size() >= 2)
{
if (flag == 0)ans = gao[gao.size() - 1] + gao[gao.size() - 2],flag=1;
else ans = max(ans, gao[gao.size() - 1] + gao[gao.size() - 2]);
}
if (!f1)mxn[u] = a[u];
mxn[u] = max(cot[u], mxn[u]);
}
int main()
{
int n;
cin >> n;
init();
for (int i = 0; i < n; i++)
{
scanf("%I64d", a + i + 1);
}
for (int i = 0; i < n - 1; i++)
{
int u, v;
scanf("%d%d", &u, &v);
addedge(u, v);
addedge(v, u);
}
dfs(1, -1);
vector<ll>gao;
for (int i = head[1]; i != -1; i = edge[i].next)
gao.push_back(mxn[edge[i].to]);
sort(gao.begin(), gao.end());
if (gao.size() >= 2)
{
if (flag == 0)ans = gao[gao.size() - 1] + gao[gao.size() - 2],flag=1;
else ans = max(ans, gao[gao.size() - 1] + gao[gao.size() - 2]);
}
if (!flag)puts("Impossible");
else printf("%I64d\n", ans);
//system("pause");
}