易康——阈值分类(规则集分类)

 在对影像进行分类之前,先进行影像分割,分割介绍如下:

第一​​​​​​z易康——图像分割、导出分割结果_经常发呆i的博客-CSDN博客

分割结束后,为了方便显示打开如下两项,可以对比查看。

1、新建进程

process tree中右键选择 append new 新建一个进程,名字改为分类,其他不变,点击ok

2、参数选择

在feature view窗口,选择各个地物比较明显的可分类特征,以水体为例,选择近红外为分类特征,选择layer4近红外波段,右键选择update range,这时把鼠标放在影像上,可以看出各个分割块体的NIR,找到最适合分出水体的NIR值

点击feature view左下角的框,可以看到NIR值的上限和下限,调整后,可看出根据不同的上个下限确定的水体范围,可辅助确定参数(蓝绿色是选择部分,灰色是非选择部分)。

3、分类

找到合适的阈值后,右键刚刚新建的分类进程,选择inter child ,algorithm选择assign class,阈值选择在threshold condition,use class选择水体,设置结束后execute。

水体分类结束后,用同样的方法继续分类其他类别,但是区分其他地物类别时,在非水体部分中进行选择,如下图把class filter改成unclassified。

4、分类结果

<think>好的,我现在需要帮用户解决易康(eCognition)阈值分类报错的问题。用户之前提到过遇到报错,但具体错误信息没有给出,所以可能需要先考虑常见问题。根据用户提供的引用内容,比如引用[3]中提到SVM分类报错,用户尝试了数据波段检查、更换影像文件、共享样本数据给同学测试,但问题依旧存在。虽然用户现在问的是阈值分类报错,但可能有些共性的问题。 首先,我应该回顾阈值分类的基本流程。根据引用[2],阈值分类需要设置阈值条件和分配类别,可能涉及规则集配置。常见的报错原因可能包括阈值设置不当、数据格式问题、样本选择错误或软件版本兼容性。 接下来,我需要列出可能的解决方案。第一步建议用户检查阈值参数,确保数值在合理范围内,特别是如果使用多波段阈值,需要确认波段索引正确。然后,数据预处理方面,确认影像已正确分割,数据类型是否为8位或16位整数,避免浮点数导致的问题。样本选择方面,引用[1]提到样本点选择的重要性,可能需要检查样本的代表性是否足够,或者是否存在样本污染。 另外,软件操作步骤是否正确,比如引用[2]中的步骤:右键分类进程,选择inter child,assign class算法,设置阈值条件和类别。用户是否严格按照这个流程操作?是否有步骤遗漏?比如是否在阈值条件中正确选择了波段和运算符(如>或<)。 还有,数据路径问题,工程文件路径包含中文或特殊字符可能导致报错,需要检查。软件版本和更新情况,是否有补丁未安装,或者尝试重新安装软件。内存不足也可能导致问题,特别是处理大影像时,需要增加内存分配或分块处理。 如果以上方法无效,建议用户导出错误日志,联系技术支持,提供详细的操作步骤和报错截图,以便进一步排查。同时,可以尝试简化流程,比如新建一个简单工程测试阈值分类,排除其他因素干扰。 最后,可能需要提醒用户注意易康对高分辨率大图幅的处理效率问题,引用[1]指出最近邻分类效率慢,但阈值分类通常较快,如果仍然很慢,可能需要检查硬件配置或分块处理。</think>针对易康(eCognition)阈值分类报错问题,以下是分步解决方案: ### 一、阈值分类报错常见原因及解决步骤 1. **阈值参数设置错误** - 检查阈值范围是否在影像数据合理区间内(如NDVI阈值应介于-1到1之间) - 多波段阈值需确认波段索引正确性 - 使用公式时需符合易康语法规范,例如:`Mean of Band 1 > 100` 2. **数据预处理问题** - 确认影像已完成**多尺度分割**(阈值分类需基于有效对象) - 检查影像数据类型是否为`8位/16位整型`(浮点型数据需先转换) - 验证影像金字塔是否建立(菜单:`Edit > Compute Image Layer Pyramids`) 3. **样本选择异常** - 确保样本覆盖所有目标类别且数量均衡(参考引用[1]的样本点选择原则) - 清除被污染的样本:右键样本层→`Delete All Samples` - 重新采集样本时启用`Sample Diversification`功能 4. **规则集配置验证** - 按引用[2]流程检查: 1. 右键进程选择`Insert Child`而非`Inter Child` 2. 确认`Assign Class`算法参数中: - `Condition`使用正确逻辑运算符(>、<、AND/OR) - `Use Class`与阈值条件匹配 - `Threshold`值未超出数据范围 ```python # 示例规则集伪代码 if (Mean_NDVI > 0.3) AND (StdDev_Band4 < 25): assign_to "Vegetation" ``` ### 二、进阶排查方法 1. **内存优化设置** - 修改`eCognition\bin\ecognition.ini`文件: ```ini -Xmx4096m # 根据物理内存调整,建议≤80%总内存 -XX:MaxPermSize=512m ``` 2. **数据兼容性检查** - TIFF文件需满足: - 无地理坐标缺失(通过`gdalinfo`验证) - 波段存储顺序与软件读取顺序一致 - 尝试导出为`ECW`或`IMG`格式重试 3. **日志分析路径** - 错误日志位置: - Windows:`C:\Users\[用户名]\AppData\Roaming\Trimble\eCognition Developer 9.0\Logs` - Linux:`~/Trimble/eCognition Developer 9.0/Logs` - 关键错误类型对照表: | 错误代码 | 解决方案 | |----------------|-------------------------| | ERR_0042 | 检查波段索引 | | ERR_0178 | 验证阈值条件语法 | | ERR_0251 | 增加JVM内存分配 | ### 三、特殊场景处理 1. **高分辨率影像处理** - 采用分块处理策略: 1. `Processes → Create Tile Container` 2. 设置重叠区域(建议≥最大对象尺寸的2倍) 3. 启用`Parallel Processing` 2. **多类别阈值冲突** - 使用优先级排序: ```markdown 1. 水体: (Band5 < 50) AND (NDWI > 0.2) 2. 建筑: (Brightness > 120) → 排除已分类水体 3. 植被: (NDVI > 0.3) → 排除已分类区域 ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值