HDOJ-1272 小希的迷宫

小希的迷宫

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 43478    Accepted Submission(s): 13383


Problem Description
上次Gardon的迷宫城堡小希玩了很久(见Problem B),现在她也想设计一个迷宫让Gardon来走。但是她设计迷宫的思路不一样,首先她认为所有的通道都应该是双向连通的,就是说如果有一个通道连通了房间A和B,那么既可以通过它从房间A走到房间B,也可以通过它从房间B走到房间A,为了提高难度,小希希望任意两个房间有且仅有一条路径可以相通(除非走了回头路)。小希现在把她的设计图给你,让你帮忙判断她的设计图是否符合她的设计思路。比如下面的例子,前两个是符合条件的,但是最后一个却有两种方法从5到达8。

 

Input
输入包含多组数据,每组数据是一个以0 0结尾的整数对列表,表示了一条通道连接的两个房间的编号。房间的编号至少为1,且不超过100000。每两组数据之间有一个空行。
整个文件以两个-1结尾。
 

Output
对于输入的每一组数据,输出仅包括一行。如果该迷宫符合小希的思路,那么输出"Yes",否则输出"No"。
 

Sample Input
  
  
6 8 5 3 5 2 6 4 5 6 0 0 8 1 7 3 6 2 8 9 7 5 7 4 7 8 7 6 0 0 3 8 6 8 6 4 5 3 5 6 5 2 0 0 -1 -1
 

Sample Output
  
  
Yes Yes No
 

介个题主要是判断是否有重路以及是否都在一个集合内,用并查集就行啦!
代码如下:
#include <cstdio>
#include <iostream>
#include <algorithm>
#include <cmath>
#include <cstring> 
#define M 1000000+10
using namespace std;
int fa[M],vis[M],ans;
int findroot(int x)  //用递归把同集合压缩到一个根节点  
{
	if(x==fa[x]) return x;
	fa[x]=findroot(fa[x]);
	return fa[x];
}
void Union(int x,int y) //互相连接的的节点置于同一根节点下  
{
	int nx=findroot(x);
	int ny=findroot(y);
	if(nx!=ny) fa[ny]=nx;
	else ans=0;       //如果已经存过了,代表有重路!
}
int main()
{
	int m,n,max1,min1;
	while(~scanf("%d%d",&n,&m)&&(n!=-1&&m!=-1))
	{
		memset(vis,0,sizeof(vis));
		if(!n&&!m){       //这是为什么?输入俩零蛋,输出Yes. 
			printf("Yes\n");
			continue;
		}
		for(int i=1;i<=M;i++){   //又是初始化  
			fa[i]=i;
		}
		vis[m]=vis[n]=1;
		max1=min(m,n);
		min1=max(m,n);
		Union(m,n);
		ans=1;
		while(scanf("%d%d",&m,&n)&&(m||n))//是否存在回路  
		{
			int x=min(m,n),y=max(n,m);
			if(x<min1) min1=x;
			if(y>max1) max1=y;
			Union(m,n);
			vis[m]=vis[n]=1;
		}
		int cnt=0;
		for(int i=min1;i<=max1;i++)//是否连通 
		{
			if(fa[i]==i&&vis[i]) cnt++;
			if(cnt>=2){
				ans=0;break;
			}
		}
		if(ans) printf("Yes\n");
		else printf("No\n");
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值