人工智能、机器学习与边缘计算的前沿应用与发展
1. 人工智能与机器学习基础概念
人工智能(AI)并非新鲜概念,自机器用于计算解决方案以来,它就一直与之相伴。目前,我们仍在不断努力让计算机变得更智能,能否为计算机编程使其具备人类的所有复杂性,以及计算机能否在某些领域替代人类,这些问题尚无答案。
机器学习(ML)是人工智能的一个子集,它广受欢迎,用于分析各种应用程序产生的大量数据。如今,机器学习是多功能系统的关键方面之一,无论是自动化还是使系统具备智能以进行推理,机器学习都在同步发挥作用。其应用广泛,包括语音识别、图像识别、医学诊断、欺诈检测和预测等。机器学习的重要特点是迭代方法,模型会通过接触新数据集不断调整,从先前的决策和结果中持续学习和适应。
机器学习和预测分析对问题的处理方式有所不同。机器学习方法更具通用性、灵活性,对各种应用的适应性更强;而预测分析则通过机器学习工具实现自动化,它基于历史数据进行未来预测,能以较高的精度生成未来洞察。预测分析有助于组织进行战略规划,例如零售商利用预测模型预测库存需求,航空公司预测机票价格,酒店业预测特定活动的客人数量,还可用于预测客户响应和购买行为以促进交叉销售,甚至分析人类行为以预测犯罪行为。
2. 各领域的研究贡献者
 以下是部分研究贡献者及其所在机构和贡献起始页码: 
 | 贡献者 | 所在机构 | 贡献起始页码 | 
 | — | — | — | 
 | Sherief Abdulla | 迪拜英国大学工程与信息学院,阿联酋迪拜 | 145 | 
 | Josh Agarwal | 印度拉贾斯坦邦斋浦尔马尼帕尔大学 | 267 | 
 | K.N. Apinaya
 
                       
                           
                         
                             
                             
                           
                           
                             超级会员免费看
超级会员免费看
                                         
                   订阅专栏 解锁全文
                订阅专栏 解锁全文
                 
             
       
           
                 
                 
                 
                 
                 
                
               
                 
                 
                 
                 
                
               
                 
                 扫一扫
扫一扫
                     
              
             
                  
 被折叠的  条评论
		 为什么被折叠?
被折叠的  条评论
		 为什么被折叠?
		 
		  到【灌水乐园】发言
到【灌水乐园】发言                                
		 
		 
    
   
    
   
             
            


 
            