软件项目工作量估算与印度医疗社会企业创新
软件项目工作量估算
在软件开发领域,准确估算项目所需的工作量至关重要,它直接影响着项目的成本、进度和质量。目前常用的工作量计算技术,如特征点分析和 COCOMO 模型,在测量软件开发所需的价值和精力方面存在不足。这些方法更适用于创建基于过程的应用程序,无法满足计算成本和工作量的需求。
使用案例点(UCP)方法基于用例图来计算软件产品的工作量,旨在从测试过程中提供精确的工作量测量。通过将案例和参与者分为普通、中等和高级三个级别,并根据每个用例的操作数量计算复杂度。然而,UCP 的计算贡献方程并未得到软件企业的广泛认可。
为了解决 UCP 模型的局限性,提高估算程序工作量的预测效率,本文采用了 M5P 技术,并使用随机森林(RF)对基于 M5P 的工作量评估方法的结果进行计算,以确定其效率。
基本概念
- 过拟合 :过拟合的数学形式代表的是随机误差,而非内在关系。当配置过于复杂,如观测数量和参数过多时,就会发生过拟合。过拟合的模型预测效率较低,因为它对训练结果中的微小变化过于敏感。
- 树剪枝 :剪枝是一种自动调整决策树大小的方法,通过消除对特定分组没有潜在价值的树部分,降低整体分类器的难度,提高统计精度,减少过拟合。
- 树平滑 :有助于解决剪枝过程中相邻静态模型在叶子节点处产生的强烈差异。
- Weka 工具 :用于数据集聚类或回归分析的数据处理应用程序,是开源软件,本文中提到
订阅专栏 解锁全文
56

被折叠的 条评论
为什么被折叠?



