四元数分析框架下的博赫纳定理
1. 引言
在四元数分析领域,四元数傅里叶变换(QFT)及其相关理论有着重要的研究价值。此前的研究探讨了QFT渐近行为的特殊性质,并将经典的博赫纳 - 米洛斯定理推广到四元数分析框架。本文的主要目标是进一步将博赫纳关于正型复值函数傅里叶积分变换的定理,推广到取值于哈密顿四元数代数的函数,其中指数函数被(非交换)四元数指数积所取代。傅里叶 - 斯蒂尔杰斯变换(FST)是标准傅里叶变换的一个著名推广,在理论和应用概率以及随机过程的某些领域中经常被应用。本文旨在开发用于解决四元数分析中偏微分方程的数值积分方法。
本文的结构如下:
- 第2节回顾经典的博赫纳定理,并介绍四元数分析的一些基本概念。
- 第3节定义并分析不同类型的四元数傅里叶 - 斯蒂尔杰斯变换(QFST),并建立其一些重要性质。
- 第4节给出本文的主要结果,即四元数函数非交换结构下的博赫纳定理的对应结果。
2. 预备知识
2.1 博赫纳定理
经典的博赫纳定理关于傅里叶积分变换,如下所述:
一个定义在区间((-\infty, \infty))上的复值函数(f(t)),若满足以下条件,则称其为正定的:
1. (f)在((-\infty, \infty))上有界且连续。
2. 对于所有的(t),(f(-t) = f(t))。
3. 对于任意一组实数(t_1, \cdots, t_s),复数(a_1, \cdots, a_s),以及任意正整数(s),不等式(\sum_{m = 1}^{s} \sum_{n = 1}^{s} a_m a_n f(t_m - t_n) \geq 0)成立
超级会员免费看
订阅专栏 解锁全文

被折叠的 条评论
为什么被折叠?



