MNIST tensorflow

原始地址import tensorflow as tf import tensorflow.examples.tutorials.mnist.input_data as input_data mnist=input_data.read_data_sets("MNIST_data/&quo...

2017-07-16 14:08:39

阅读数:357

评论数:0

交叉熵与相对熵

如何通俗的解释交叉熵与相对熵?

2017-06-11 22:53:56

阅读数:248

评论数:0

GBDT写的好的资料

首先是论文:Greedy Function Approximation: A Gradient Boosting Machine GBDT理解二三事 机器学习中的算法(1)-决策树模型组合之随机森林与GBDT GBDT的wiki百科

2017-05-21 15:01:05

阅读数:771

评论数:0

标准化,归一化和正则化

0.参考文献关于使用sklearn进行数据预处理 —— 归一化/标准化/正则化 2017.6.3更新: 数据标准化/归一化normalization 归一化与标准化1.标准化用的最多的是 z-score标准化公式为 (X - mean)/ std计算时对每个属性(每列)分别进行。 将数据按...

2016-12-04 20:24:22

阅读数:6589

评论数:0

数据清洗

1.概念数据清洗:把脏数据清洗掉,提高数据质量。 Data cleansing, Data cleaning, Data scrubbing三种表达方式都可以,意思都是检测和去除数据集中的噪声数据和无关数据,处理遗漏数据,去除空白数据域和知识背景下的白噪声。 数据清洗分为有监督清洗和无监督清洗...

2015-11-04 21:45:02

阅读数:10451

评论数:0

Python pandas 初步

pandas 一般用来进行数据分析。0. 引入pandasfrom pandas import Series, DataFrame import pandas as pd1. Series1. 创建Seriesobj = Series([4,7,-5,3]) > output: > 0...

2015-10-25 22:41:03

阅读数:446

评论数:0

CRF++的初步使用(1)

1.前言条件随机场(Conditional Random Field,CRF)在自然语言处理中有着十分广泛的应用, CRF条件随机场简介 而开源的CRF++避免了我们一个一个的去造轮子。我们来看一下CRF++是如何使用的。2.CRF++的下载原始网址: CRF++: Yet Another ...

2015-07-10 22:10:04

阅读数:1721

评论数:0

微博背后的那些算法

原文 微博背后的那些算法引言 微博是一个很多人都在用的社交应用。天天刷微博的人每天都会进行着这样几个操作:原创、转发、回复、阅读、关注、@等。其中,前四个是针对短博文,最后的关注和@则针对的是用户之间的关系,关注某个人就意味着你成为他的粉丝,而他成为你的好友;@某个人意味着你想要他看到你的微博...

2015-06-24 22:16:48

阅读数:274

评论数:0

归一化

一般的三种归一化方法: 1、线性函数转换,表达式如下:    y=(x-MinValue)/(MaxValue-MinValue) 归一化至[0 1] y=2*(x-MinValue)/(MaxValue-MinValue)-1 归一化至[-1 1]  2、对数函数转换,表达式如...

2015-06-05 21:42:31

阅读数:585

评论数:0

机器学习 非均衡分类问题

相关文章1.其他分类性能度量指标:正确率,召回率及ROC曲线混淆矩阵(confusion matrix):可视化工具,特别用于监督学习,在无监督学习一般叫做匹配矩阵。 混淆矩阵 预测结果 +1 预测结果 -1 真实结果+1 真正例(True Positive,TP) 伪反例...

2015-05-17 22:03:23

阅读数:1097

评论数:0

python adaboost 自适应数据加载函数

def loadDataSet(filename): numFeat=len(open(filename).readline().split('\t')) dataMat=[];labelMat=[] fr=open(fileName) for line in fr...

2015-05-17 15:47:42

阅读数:628

评论数:0

Adaboost

原文 上述文章讲了AdaBoost(adaptive boosting自适应提升算法)的理论基础和一个小例子。 bagging(bootstrap aggregating,自举汇聚法)是从原始数据集选择S次后得到S个新数据集的一种技术。 boosting是一种与bagging很类似的技术。...

2015-05-16 21:55:59

阅读数:483

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭