Prim
最小生成树是数据结构中图的一种重要应用,它的要求是从一个带权无向完全图中选择n-1条边并使这个图仍然连通(也即得到了一棵生成树),同时还要考虑使树的权最小。
为了得到最小生成树,人们设计了很多算法,最著名的有prim算法和kruskal算法。教材中介绍了prim算法,但是讲得不够详细,理解起来比较困难,为了帮助大家更好的理解这一算法,本文对书中的内容作了进一步的细化,希望能对大家有所帮助。
假设V是图中顶点的集合,E是图中边的集合,TE为最小生成树中的边的集合,则prim算法通过以下步骤可以得到最小生成树:
1:初始化:U={u 0},TE={}。此步骤设立一个只有结点u 0的结点集U和一个空的边集TE作为最小生成树的初始行态,在随后的算法执行中,这个行态会不断的发生变化,直到得到最小生成树为止。
2:在所有u∈U,v∈V-U的边(u,v)∈E中,找一条权最小的边(u 0,v 0),将此边加进集合TE中,并将此边的非U中顶点加入U中。此步骤的功能是在边集E中找一条边,要求这条边满足以下条件:首先边的两个顶点要分别在顶点集合U和V-U中,其次边的权要最小。找到这条边以后,把这条边放到边集TE中,并把这条边上不在U中的那个顶点加入到U中。这一步骤在算法中应执行多次,每执行一次,集合TE和U都将发生变化,分别增加一条边和一个顶点,因此,TE和U是两个动态的集合,这一点在理解算法时要密切注意。
3:如果U=V,则算法结束;否则重复步骤2。可以把本步骤看成循环终止条件。我们可以算出当U=V时,步骤2共执行了n-1次(设n为图中顶点的数目),TE中也增加了n-1条边,这n-1条边就是需要求出的最小生成树的边。
了解了prim算法的基本思想以后,下面我们就可以看看具体的算法。
为了和教材保持一致,我们仍然规定:连通网用邻接矩阵net表示,若两个顶点之间不存在边,其权值为计算机内允许最大值,否则为对应边上的权值。
首先定义数据类型:
type adjmatrix=array [1..n,1..n] of real;
//定义一个n*n的矩阵类型adjmatrix,以便存储邻接矩阵//
edge=record
beg,en:1..n;
length:real;
end;
//定义边的存储结构为edge,其中beg是边的起点, en 是边的终点,length是边的权值//
treetype=array [1..n-1] of edge;
//定义一个基类型为edge的数组类型 treetype,其元素个数为n-1个//
var net:adjmatrix;
//定义一个adjmatrix类型的变量net,图的邻接矩阵就存放在net中//
tree:treetype;
//定义一个treetype类型的变量tree,tree中可以存放n-1条边的信息,包括起点、终点及权值。在算法结束后,最小生成树的n-1 条边就存放在tree中//
算法如下(设n为构造的出发点):
procedure prim(net:adjmatrix;var tree:treetype);
//过程首部.参数的含义是:值参数net传递图的邻接矩阵,变参tree指明最小生成树的存放地址//
begin
for v:=1 to n-1 do
//此循环将顶点n与图中其它n-1个顶点形成的n-1条边存放在变量tree中//
[tree[v].beg:=n;
tree[v].en:=v;
tree[v].length:=net[n,v]]
for k:=1 to n-1 do
//此循环执行算法思想中的步骤2,循环体每执行一次,TE中将增加一条边,在算法中,这条增加的边存放在变量tree中的第k个元素上,可以这样认为,tree中从第1到第k号元素中存放了TE和U的信息。注意:在算法思想中我们特别提醒了TE和U的动态性,表现在算法中,这种动态性 体现在循环变量k的变化上。//
[min:=tree[k].length;
for j:=k to n-1 do
if tree[j].length<min then
[min:=tree[j].length;
m:=j;]
//上面两条语句用于搜索权值最小的边//
v:=tree[m].en;
//此语句记录刚加入TE中的边的终点,也即即将加入U中的顶点//
edge:=tree[m];
tree[m]:=tree[k];
tree[k]:=edge;
//上面三句用于将刚找到的边存储到变量tree的第k号元素上//
for j:=k+1 to n-1 do
//此循环用于更新tree中第k+1到第n-1号元素。更新以后这些元素中的en子项是各不相同的,它们的全部就是集合V-U;beg子项则可以相同,但它们需满足两个条件:一是应属于集合U;另一是beg子项和en子项行成的边,在所有与顶点en联系的边中权值应最小。//
[d:=net[v.tree[j].en];
if d<tree[j].length
then [tree[j].length:=d;
tree[j].beg:=v;]
]
]
for j:=1 to n-1 do
//此循环用于输出最小生成树//
writeln(tree[j].beg,tree[j].en,tree[j].length);
end;
此算法的精妙之处在于对求权值最小的边这一问题的分解(也正是由于这种分解,而导致了算法理解上的困难)。按照常规的思路,这一问题应该这样解决:分别从集合V-U和U中取一顶点,从邻接矩阵中找到这两个顶点行成的边的权值,设V-U中有m个顶点,U中有n个顶点,则需要找到m*n个权值,在这m*n个权值中,再查找权最小的边。循环每执行一次,这一过程都应重复一次,相对来说计算量比较大。而本算法则利用了变量tree中第k+1到第n-1号元素来存放到上一循环为止的一些比较结果,如以第k+1号元素为例,其存放的是集合U中某一顶点到顶点tree.en的边,这条边是到该点的所有边中权值最小的边,所以,求权最小的边这一问题,通过比较第k+1号到第n-1号元素的权的大小就可以解决,每次循环只用比较n-k-2次即可,从而大大减小了计算量。
完全代码:
program prim;
const map:array [1..6,1..6] of integer=((0,6,1,5,0,0),
(6,0,5,0,3,0),
(1,5,0,5,6,4),
(5,0,5,0,0,2),
(0,3,6,0,0,6),
(0,0,4,2,6,0));
var
i,j,l:integer;
min,minn:longint;
f,d:array [1..6] of integer;
s:array [1..6,1..3] of integer;
v,p:set of 1..6;
begin
l:=1;
p:=[ ];
v:=[ ];
for i:=2 to 6 do v:=v+[i];
p:=p+[1];
for i:=1 to 6 do f[i]:=1000;
// fillchar(f,sizeof(f),1000);
f[1]:=0;
// fillchar(d,sizeof(d),0);
for i:=1 to 6 do d[i]:=0;
s[1,3]:=0;
for i:=1 to 5 do
begin
min:=1000;
for j:=1 to 6 do
begin
if (f[j]>map[l,j]) and (j in v) and (map[l,j]<>0) then
begin f[j]:=map[l,j];d[j]:=l;end;
if (f[j]<min) and (f[j]>0) then begin min:=f[j];minn:=j; end;
writeln(d[j]);
end;
f[minn]:=0;
v:=v-[minn];
p:=p+[minn];
s[i,1]:=d[minn];
l:=minn;
s[i,2]:=minn;
s[i,3]:=min;
end;
for i:=2 to 6 do write(s[i,1],'to',s[i,2],'=',s[i,3],' --> ');
readln;
end.
为了得到最小生成树,人们设计了很多算法,最著名的有prim算法和kruskal算法。教材中介绍了prim算法,但是讲得不够详细,理解起来比较困难,为了帮助大家更好的理解这一算法,本文对书中的内容作了进一步的细化,希望能对大家有所帮助。
假设V是图中顶点的集合,E是图中边的集合,TE为最小生成树中的边的集合,则prim算法通过以下步骤可以得到最小生成树:
1:初始化:U={u 0},TE={}。此步骤设立一个只有结点u 0的结点集U和一个空的边集TE作为最小生成树的初始行态,在随后的算法执行中,这个行态会不断的发生变化,直到得到最小生成树为止。
2:在所有u∈U,v∈V-U的边(u,v)∈E中,找一条权最小的边(u 0,v 0),将此边加进集合TE中,并将此边的非U中顶点加入U中。此步骤的功能是在边集E中找一条边,要求这条边满足以下条件:首先边的两个顶点要分别在顶点集合U和V-U中,其次边的权要最小。找到这条边以后,把这条边放到边集TE中,并把这条边上不在U中的那个顶点加入到U中。这一步骤在算法中应执行多次,每执行一次,集合TE和U都将发生变化,分别增加一条边和一个顶点,因此,TE和U是两个动态的集合,这一点在理解算法时要密切注意。
3:如果U=V,则算法结束;否则重复步骤2。可以把本步骤看成循环终止条件。我们可以算出当U=V时,步骤2共执行了n-1次(设n为图中顶点的数目),TE中也增加了n-1条边,这n-1条边就是需要求出的最小生成树的边。
了解了prim算法的基本思想以后,下面我们就可以看看具体的算法。
为了和教材保持一致,我们仍然规定:连通网用邻接矩阵net表示,若两个顶点之间不存在边,其权值为计算机内允许最大值,否则为对应边上的权值。
首先定义数据类型:
type adjmatrix=array [1..n,1..n] of real;
//定义一个n*n的矩阵类型adjmatrix,以便存储邻接矩阵//
edge=record
beg,en:1..n;
length:real;
end;
//定义边的存储结构为edge,其中beg是边的起点, en 是边的终点,length是边的权值//
treetype=array [1..n-1] of edge;
//定义一个基类型为edge的数组类型 treetype,其元素个数为n-1个//
var net:adjmatrix;
//定义一个adjmatrix类型的变量net,图的邻接矩阵就存放在net中//
tree:treetype;
//定义一个treetype类型的变量tree,tree中可以存放n-1条边的信息,包括起点、终点及权值。在算法结束后,最小生成树的n-1 条边就存放在tree中//
算法如下(设n为构造的出发点):
procedure prim(net:adjmatrix;var tree:treetype);
//过程首部.参数的含义是:值参数net传递图的邻接矩阵,变参tree指明最小生成树的存放地址//
begin
for v:=1 to n-1 do
//此循环将顶点n与图中其它n-1个顶点形成的n-1条边存放在变量tree中//
[tree[v].beg:=n;
tree[v].en:=v;
tree[v].length:=net[n,v]]
for k:=1 to n-1 do
//此循环执行算法思想中的步骤2,循环体每执行一次,TE中将增加一条边,在算法中,这条增加的边存放在变量tree中的第k个元素上,可以这样认为,tree中从第1到第k号元素中存放了TE和U的信息。注意:在算法思想中我们特别提醒了TE和U的动态性,表现在算法中,这种动态性 体现在循环变量k的变化上。//
[min:=tree[k].length;
for j:=k to n-1 do
if tree[j].length<min then
[min:=tree[j].length;
m:=j;]
//上面两条语句用于搜索权值最小的边//
v:=tree[m].en;
//此语句记录刚加入TE中的边的终点,也即即将加入U中的顶点//
edge:=tree[m];
tree[m]:=tree[k];
tree[k]:=edge;
//上面三句用于将刚找到的边存储到变量tree的第k号元素上//
for j:=k+1 to n-1 do
//此循环用于更新tree中第k+1到第n-1号元素。更新以后这些元素中的en子项是各不相同的,它们的全部就是集合V-U;beg子项则可以相同,但它们需满足两个条件:一是应属于集合U;另一是beg子项和en子项行成的边,在所有与顶点en联系的边中权值应最小。//
[d:=net[v.tree[j].en];
if d<tree[j].length
then [tree[j].length:=d;
tree[j].beg:=v;]
]
]
for j:=1 to n-1 do
//此循环用于输出最小生成树//
writeln(tree[j].beg,tree[j].en,tree[j].length);
end;
此算法的精妙之处在于对求权值最小的边这一问题的分解(也正是由于这种分解,而导致了算法理解上的困难)。按照常规的思路,这一问题应该这样解决:分别从集合V-U和U中取一顶点,从邻接矩阵中找到这两个顶点行成的边的权值,设V-U中有m个顶点,U中有n个顶点,则需要找到m*n个权值,在这m*n个权值中,再查找权最小的边。循环每执行一次,这一过程都应重复一次,相对来说计算量比较大。而本算法则利用了变量tree中第k+1到第n-1号元素来存放到上一循环为止的一些比较结果,如以第k+1号元素为例,其存放的是集合U中某一顶点到顶点tree.en的边,这条边是到该点的所有边中权值最小的边,所以,求权最小的边这一问题,通过比较第k+1号到第n-1号元素的权的大小就可以解决,每次循环只用比较n-k-2次即可,从而大大减小了计算量。
完全代码:
program prim;
const map:array [1..6,1..6] of integer=((0,6,1,5,0,0),
(6,0,5,0,3,0),
(1,5,0,5,6,4),
(5,0,5,0,0,2),
(0,3,6,0,0,6),
(0,0,4,2,6,0));
var
i,j,l:integer;
min,minn:longint;
f,d:array [1..6] of integer;
s:array [1..6,1..3] of integer;
v,p:set of 1..6;
begin
l:=1;
p:=[ ];
v:=[ ];
for i:=2 to 6 do v:=v+[i];
p:=p+[1];
for i:=1 to 6 do f[i]:=1000;
// fillchar(f,sizeof(f),1000);
f[1]:=0;
// fillchar(d,sizeof(d),0);
for i:=1 to 6 do d[i]:=0;
s[1,3]:=0;
for i:=1 to 5 do
begin
min:=1000;
for j:=1 to 6 do
begin
if (f[j]>map[l,j]) and (j in v) and (map[l,j]<>0) then
begin f[j]:=map[l,j];d[j]:=l;end;
if (f[j]<min) and (f[j]>0) then begin min:=f[j];minn:=j; end;
writeln(d[j]);
end;
f[minn]:=0;
v:=v-[minn];
p:=p+[minn];
s[i,1]:=d[minn];
l:=minn;
s[i,2]:=minn;
s[i,3]:=min;
end;
for i:=2 to 6 do write(s[i,1],'to',s[i,2],'=',s[i,3],' --> ');
readln;
end.
POJ1251
Jungle Roads
Time Limit: 1000MS | Memory Limit: 10000K | |
Total Submissions: 6985 | Accepted: 3201 |
Description
The Head Elder of the tropical island of Lagrishan has a problem. A burst of foreign aid money was spent on extra roads between villages some years ago. But the jungle overtakes roads relentlessly, so the large road network is too expensive to maintain. The Council of Elders must choose to stop maintaining some roads. The map above on the left shows all the roads in use now and the cost in aacms per month to maintain them. Of course there needs to be some way to get between all the villages on maintained roads, even if the route is not as short as before. The Chief Elder would like to tell the Council of Elders what would be the smallest amount they could spend in aacms per month to maintain roads that would connect all the villages. The villages are labeled A through I in the maps above. The map on the right shows the roads that could be maintained most cheaply, for 216 aacms per month. Your task is to write a program that will solve such problems.
Input
The input consists of one to 100 data sets, followed by a final line containing only 0. Each data set starts with a line containing only a number n, which is the number of villages, 1 < n < 27, and the villages are labeled with the first n letters of the alphabet, capitalized. Each data set is completed with n-1 lines that start with village labels in alphabetical order. There is no line for the last village. Each line for a village starts with the village label followed by a number, k, of roads from this village to villages with labels later in the alphabet. If k is greater than 0, the line continues with data for each of the k roads. The data for each road is the village label for the other end of the road followed by the monthly maintenance cost in aacms for the road. Maintenance costs will be positive integers less than 100. All data fields in the row are separated by single blanks. The road network will always allow travel between all the villages. The network will never have more than 75 roads. No village will have more than 15 roads going to other villages (before or after in the alphabet). In the sample input below, the first data set goes with the map above.
Output
The output is one integer per line for each data set: the minimum cost in aacms per month to maintain a road system that connect all the villages. Caution: A brute force solution that examines every possible set of roads will not finish within the one minute time limit.
Sample Input
9 A 2 B 12 I 25 B 3 C 10 H 40 I 8 C 2 D 18 G 55 D 1 E 44 E 2 F 60 G 38 F 0 G 1 H 35 H 1 I 35 3 A 2 B 10 C 40 B 1 C 20 0
Sample Output
216 30
Source