样本方差为什么要除n-1,而不是n

首先我们来看看方差的计算公式: S2=1n1ni=1(XiX¯¯¯¯)2 S 2 = 1 n − 1 ∑ i = 1 n ( X i − X ¯ ) 2
其中: X¯¯¯¯=1nni=1Xi X ¯ = 1 n ∑ i = 1 n X i 为均值
由均值的计算公式知,一旦计算了平均值,n个变量就是不再独立了,都与均值产生了联系,也就是说在n个随机变量 Xi X i 中只要知道了其中的任意n-1个及均值 X¯¯¯¯ X ¯ 就能求出另外一个,故能自由地取值的随机变量只有n-1个。所以在用均值计算方差时,能自由变化的随机变量只有n-1个,所以方差要除是n-1。
举个例子, X1=2X2=4X3=6 X 1 = 2 , X 2 = 4 , X 3 = 6 ,均值 X¯¯¯¯=4 X ¯ = 4 ,只要知道了 X¯¯¯¯ X ¯ X1,X2 X 1 , X 2 X3=3×X¯¯¯¯X1X2 X 3 = 3 × X ¯ − X 1 − X 2 ,就能计算出来,也就是说 X3 X 3 不能自由地取值了。


我们希望样本方差的期望是总体的方差( σ2 σ 2 ),如果把自由度设为n会有什么后果?证明一下。

E(S2)=E(1nni=1(X
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值