首先我们来看看方差的计算公式: S2=1n−1∑ni=1(Xi−X¯¯¯¯)2 S 2 = 1 n − 1 ∑ i = 1 n ( X i − X ¯ ) 2
其中: X¯¯¯¯=1n∑ni=1Xi X ¯ = 1 n ∑ i = 1 n X i 为均值
由均值的计算公式知,一旦计算了平均值,n个变量就是不再独立了,都与均值产生了联系,也就是说在n个随机变量 Xi X i 中只要知道了其中的任意n-1个及均值 X¯¯¯¯ X ¯ 就能求出另外一个,故能自由地取值的随机变量只有n-1个。所以在用均值计算方差时,能自由变化的随机变量只有n-1个,所以方差要除是n-1。
举个例子, X1=2,X2=4,X3=6 X 1 = 2 , X 2 = 4 , X 3 = 6 ,均值 X¯¯¯¯=4 X ¯ = 4 ,只要知道了 X¯¯¯¯ X ¯ 和 X1,X2 X 1 , X 2 , X3=3×X¯¯¯¯−X1−X2 X 3 = 3 × X ¯ − X 1 − X 2 ,就能计算出来,也就是说 X3 X 3 不能自由地取值了。
我们希望样本方差的期望是总体的方差( σ2 σ 2 ),如果把自由度设为n会有什么后果?证明一下。
E(S2)=E(1n∑ni=1(X