样本方差为什么要除n-1,而不是n

首先我们来看看方差的计算公式: S2=1n1ni=1(XiX¯¯¯¯)2 S 2 = 1 n − 1 ∑ i = 1 n ( X i − X ¯ ) 2
其中: X¯¯¯¯=1nni=1Xi X ¯ = 1 n ∑ i = 1 n X i 为均值
由均值的计算公式知,一旦计算了平均值,n个变量就是不再独立了,都与均值产生了联系,也就是说在n个随机变量 Xi X i 中只要知道了其中的任意n-1个及均值 X¯¯¯¯ X ¯ 就能求出另外一个,故能自由地取值的随机变量只有n-1个。所以在用均值计算方差时,能自由变化的随机变量只有n-1个,所以方差要除是n-1。
举个例子, X1=2X2=4X3=6 X 1 = 2 , X 2 = 4 , X 3 = 6 ,均值 X¯¯¯¯=4 X ¯ = 4 ,只要知道了 X¯¯¯¯ X ¯ X1,X2 X 1 , X 2 X3=3×X¯¯¯¯X1X2 X 3 = 3 × X ¯ − X 1 − X 2 ,就能计算出来,也就是说 X3 X 3 不能自由地取值了。


我们希望样本方差的期望是总体的方差( σ2 σ 2 ),如果把自由度设为n会有什么后果?证明一下。

E(S2)=E(1nni=1(XiX¯¯¯¯)2))=E(1nni=1((Xiμ)(X¯¯¯¯μ))2)=E(1nni=1((Xiμ)22(Xiμ)(X¯¯¯¯μ)+(X¯¯¯¯μ)2))=E((1nni=1(Xiμ)2)2n(X¯¯¯¯μ)ni=1(Xiμ)+(X¯¯¯¯μ)2)=E((1nni=1(Xiμ)2)2n(X¯¯¯¯μ)×(ni=1Xinμ)+(X¯¯¯¯μ)2)=E((1nni=1(Xiμ)2)2n(X¯¯¯¯μ)×n×(1nni=1Xiμ)+(X¯¯¯¯μ)2)=E((1nni=1(Xiμ)2)2n(X¯¯¯¯μ)×n×(X¯¯¯¯μ)+(X¯¯¯¯μ)2)=E((1nni=1(Xiμ)2)(X¯¯¯¯μ)2)=E((1nni=1(Xiμ)2))E((X¯¯¯¯μ)2))=σ2E((1n(ni=1Xinμ))2)=σ2E((1n(ni=1Xinμ))2)=σ2E((1n(ni=1(Xiμ))2)=σ21nE(1n(ni=1(Xiμ))2)=σ21nσ2=(11n)σ2=(n1n)σ2<σ2 E ( S 2 ) = E ( 1 n ∑ i = 1 n ( X i − X ¯ ) 2 ) ) = E ( 1 n ∑ i = 1 n ( ( X i − μ ) − ( X ¯ − μ ) ) 2 ) = E ( 1 n ∑ i = 1 n ( ( X i − μ ) 2 − 2 ( X i − μ ) ( X ¯ − μ ) + ( X ¯ − μ ) 2 ) ) = E ( ( 1 n ∑ i = 1 n ( X i − μ ) 2 ) − 2 n ( X ¯ − μ ) ∑ i = 1 n ( X i − μ ) + ( X ¯ − μ ) 2 ) = E ( ( 1 n ∑ i = 1 n ( X i − μ ) 2 ) − 2 n ( X ¯ − μ ) × ( ∑ i = 1 n X i − n μ ) + ( X ¯ − μ ) 2 ) = E ( ( 1 n ∑ i = 1 n ( X i − μ ) 2 ) − 2 n ( X ¯ − μ ) × n × ( 1 n ∑ i = 1 n X i − μ ) + ( X ¯ − μ ) 2 ) = E ( ( 1 n ∑ i = 1 n ( X i − μ ) 2 ) − 2 n ( X ¯ − μ ) × n × ( X ¯ − μ ) + ( X ¯ − μ ) 2 ) = E ( ( 1 n ∑ i = 1 n ( X i − μ ) 2 ) − ( X ¯ − μ ) 2 ) = E ( ( 1 n ∑ i = 1 n ( X i − μ ) 2 ) ) − E ( ( X ¯ − μ ) 2 ) ) = σ 2 − E ( ( 1 n ( ∑ i = 1 n X i − n μ ) ) 2 ) = σ 2 − E ( ( 1 n ( ∑ i = 1 n X i − n μ ) ) 2 ) = σ 2 − E ( ( 1 n ( ∑ i = 1 n ( X i − μ ) ) 2 ) = σ 2 − 1 n E ( 1 n ( ∑ i = 1 n ( X i − μ ) ) 2 ) = σ 2 − 1 n σ 2 = ( 1 − 1 n ) σ 2 = ( n − 1 n ) σ 2 < σ 2

以上推导说明如果除的是n那么得到的方差总比总体的方差小那么一点点。


下面我们作一点点修正:

E(S2)=(n1n)σ2 E ( S 2 ) = ( n − 1 n ) σ 2

在式子的两边乘上 nn1 n n − 1 得:
nn1E(S2)=nn1(n1n)σ2=σ2 n n − 1 E ( S 2 ) = n n − 1 ( n − 1 n ) σ 2 = σ 2

即:
nn1E(S2)=σ2E(nn1S2)=σ2E(nn11ni=1n(XiX¯¯¯¯))=σ2E(1n1i=1n(XiX¯¯¯¯))=σ2 n n − 1 E ( S 2 ) = σ 2 E ( n n − 1 S 2 ) = σ 2 E ( n n − 1 1 n ∑ i = 1 n ( X i − X ¯ ) ) = σ 2 E ( 1 n − 1 ∑ i = 1 n ( X i − X ¯ ) ) = σ 2

所以 1n1ni=1(XiX¯¯¯¯) 1 n − 1 ∑ i = 1 n ( X i − X ¯ ) 是总体方差的无偏估计量,而不能使用 1nni=1(XiX¯¯¯¯) 1 n ∑ i = 1 n ( X i − X ¯ )

  • 19
    点赞
  • 32
    收藏
    觉得还不错? 一键收藏
  • 6
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值