排序算法

冒泡排序、选择排序、插入排序、归并排序

冒泡排序

通过交换的方式:若当前元素比下一个元素大,则两个元素交换. 每一趟扫描区域中最大的元素就位.

JAVA代码

public class Sort_Bubble {
    public void bubbleSort(int[] arr){
        if (arr == null || arr.length<2) return;

        for(int len = arr.length-1; len>0; len--){
            for(int i = 0; i< len; i++){
                if (arr[i] > arr[i+1]){
                    swap(arr, i, i+1);
                }
            }
        }
    }
    public static void swap(int[] arr, int i, int j){
        int temp = arr[i];
        arr[i] = arr[j];
        arr[j] = temp;
    }
}

时间复杂度O(n^2),空间复杂度O(1).
稳定性:稳定.
在这里插入图片描述


选择排序

每次从无序的里面选出最大的元素.(冒泡排序也是一种选择排序)
在这里插入图片描述
小步慢跑式移动导致效率低.

java代码`

public class Sort_Selection {
    public static void selectionSort(int[] arr){
        if(arr == null || arr.length<2) return;
        for(int start=0; start<arr.length;start++){
            int minIndex = start;
            for(int i= start; i<arr.length; i++){
                minIndex = arr[i] < arr[minIndex] ? i:minIndex;
            }
            swap(arr, start, minIndex);
        }
    }

    public static void swap(int[] arr, int i, int j){
        int temp = arr[i];
        arr[i] = arr[j];
        arr[j] = temp;
    }
}

在这里插入图片描述
时间复杂度O(n^2),空间复杂度O(1).
稳定性:不稳定.


插入排序

当前元素按次序插到有序序列中.
在这里插入图片描述
Java代码:

public class Sort_Insertion {
    public static void insertionSort(int[] arr){
        for(int i=1; i<arr.length; i++){
            for (int curr=i; curr>0 && arr[curr-1]>arr[curr]; curr--){  //当前元素在有效位置并且比前一个元素小,则交换
                    swap(arr, curr-1,curr);
            }
        }
    }
    public static void swap(int[] arr, int i, int j){
        int temp = arr[i];
        arr[i] = arr[j];
        arr[j] = temp;
    }
 }

时间复杂度:最好O(n),最坏O(n^2). 空间复杂度O(1).
稳定性:稳定.


归并排序

分治策略:

  • 序列一分为二 //O(1)
  • 子序列递归排序 // 2*T(n/2)
  • 合并有序子序列 //O(n)
    在这里插入图片描述
    JAVA代码
public class Sort_Merge {
    public static void mergeSort(int[] arr){
        if (arr == null || arr.length<2) return;
        sortProcess(arr, 0, arr.length-1);
    }
    
    //排序
    public static void sortProcess(int[] arr, int L, int R){
        if (L == R) return;
        int mid = L + ((R-L)>>1);
        sortProcess(arr, L, mid);
        sortProcess(arr, mid+1, R);
        merge(arr, L, mid, R);
    }
    //归并
    public static void merge(int[] arr, int L, int mid, int R){
        int[] help = new int[R-L+1];
        int i = L;
        int j = mid+1;
        int k = 0;
        while (i<=mid && j<=R){
            help[k++] = arr[i]<=arr[j] ? arr[i++]: arr[j++];
        }
        //有且仅有一个子序列没有被访问完
        while (i<=mid)
            help[k++] = arr[i++];

        while (j<=R)
            help[k++] = arr[j++];
        //合并后的序列重新装回arr
        for (i = 0; i<help.length; i++)
            arr[L+i] = help[i];
    }
  }

时间复杂度:T(n) = 2T(n/2) + O(n) =O(nlogn)
空间复杂度: 临时数组+压栈 O(n) + O(logn) = O(n)
稳定性:稳定.


快速排序

1. 经典快排

每次以无序部分最后一个元素x为基准,一分为二:
左:小于等于x,
右:大于x。
在这里插入图片描述
JAVA代码:

public class Sort_Quick {
    /*************经典快排*************/
    public static void quickSort1(int[] arr, int L, int R){
        if (L < R) {
            int posi = position1(arr, L, R); //切分的位置
            quickSort1(arr, L, posi - 1);                //左部分排序
            quickSort1(arr, posi + 1, R);     //右部分排序
        }
    }
    public static int position1(int[] arr, int L, int R){
        int posi;
        int less = L-1;
        int more = R;
        int i = L;
        while (i < more){
            if (arr[i] <= arr[R]) swap1(arr, ++less, i++); //当前元素小于等于最后一个元素,小于等于部分后一个元素与当前元素交换.
            else if (arr[i] > arr[R]) swap1(arr, --more, i);  //当前元素比最后一个元素大,当前元素与大于部分的前一个元素交换
        }
        swap1(arr, more, R);
        posi = more;
        return  posi;
    }
    public static void swap1(int[] arr, int i, int j){
        int temp = arr[i];
        arr[i] = arr[j];
        arr[j] = temp;
    }
  }

时间复杂度:最坏情况O(n^2) , 平均情况 O(nlogn)
空间复杂度:最坏情况O(n),平均情况 O(logn)
稳定性:稳定.

2. 改进快排

与经典快排不同的是,改进快排是将小于x的作为左部分。省去了对相同元素的操作.
在这里插入图片描述
JAVA代码:

public class Sort_Quick {
public static void quickSort2(int[] arr, int L, int R){
        if (L < R) {
            int[] posi = position2(arr, L, R); //切分的位置
            quickSort1(arr, L, posi[0] - 1);                //左部分排序
            quickSort1(arr, posi[1] + 1, R);     //右部分排序
        }
    }
    public static int[] position2(int[] arr, int L, int R){  //大小为2的数组保存切分点的位置
        int[] posi = new int[2];
        int less = L-1;
        int more = R;
        int i = L;
        while (i < more){
            if (arr[i] < arr[R]) swap2(arr, ++less, i++);  //当前元素比最后一个元素小,继续向后遍历.
            else if (arr[i] > arr[R]) swap2(arr, --more, i);  //当前元素比最后一个元素大,当前元素与大于部分的前一个元素交换
            else i++;                                       //当前元素等于最后一个元素,不作任何操作继续向后扫描
        }
        swap2(arr, more, R);
        posi[0] = less+1;
        posi[1] = more;
        return  posi;
    }
    public static void swap2(int[] arr, int i, int j){
        int temp = arr[i];
        arr[i] = arr[j];
        arr[j] = temp;
    }
  }

时间复杂度:最坏情况O(n^2) , 平均情况 O(nlogn),但常数项比经典快排小.
空间复杂度:最坏情况O(n),平均情况 O(logn).
稳定性:稳定.

3. 随机快排

当数组完全逆序时,每次只能将数组分出左部分,每次只固定一个元素,因此花费的时间为O(n^2).
与经典快排不同的是,随机快排每次以无序部分随机位置上的元素为基准。花费时间的期望值为O(nlogn).

JAVA代码:

public class Sort_Quick {
/*************随机快排*************/
    public static void quickSort3(int[] arr, int L, int R){
        if (L < R) {
            swap3(arr, L + (int)(Math.random()*(R-L+1)), R);//随机选择一个位置的元素作为基准,并放在最后
            int[] posi = position3(arr, L, R); //切分的位置
            quickSort1(arr, L, posi[0] - 1);                //左部分排序
            quickSort1(arr, posi[1] + 1, R);     //右部分排序
        }
    }
    public static int[] position3(int[] arr, int L, int R){  //大小为2的数组保存切分点的位置
        int[] posi = new int[2];
        int less = L-1;
        int more = R;
        int i = L;
        while (i < more){
            if (arr[i] < arr[R]) swap3(arr, ++less, i++);  //当前元素比最后一个元素小,继续向后遍历.
            else if (arr[i] > arr[R]) swap3(arr, --more, i);  //当前元素比最后一个元素大,当前元素与大于部分的前一个元素交换
            else i++;                                       //当前元素等于最后一个元素,不作任何操作继续向后扫描
        }
        swap3(arr, more, R);
        posi[0] = less+1;
        posi[1] = more;
        return  posi;
    }
    public static void swap3(int[] arr, int i, int j){
        int temp = arr[i];
        arr[i] = arr[j];
        arr[j] = temp;
    }
  }

期望时间复杂度:T(n) = 2T(n/2)+O(n) = O(nlogn).
空间复杂度:O(logn).
稳定性:稳定.


堆排序

大根堆中最大的数为根的值,则只要每次将无序部分形成大根堆,将大根堆中的根加入有序系列。重复此过程直到整个序列有序。

  1. 无序部分形成大根堆。
  2. 大根堆中的根与最后一个元素互换。
  3. 最后一个元素加入有序部分。
  4. 堆下沉继续形成大根堆。
    在这里插入图片描述
    JAVA代码:
public class Sort_Peach {
    public void peachSort(int[] arr){
        if (arr == null || arr.length<2) return;

        //构建大根堆
        for (int i = 0; i<arr.length; i++){
            heapInsert(arr, i);  //0——i 位置的大根堆
        }
        int heapSize = arr.length;
        swap(arr, 0, --heapSize);   //根结点与最后一个元素交换

        //当大根堆的数量为0,则整个数组有序。
        while(heapSize>0){
            heapify(arr, 0, heapSize);  //根节点下沉
            swap(arr,0, --heapSize);       //根节点与无序部分最后一个元素交换。
        }



    }
    /*****形成大根堆***/
    public static void heapInsert(int[] arr, int index){
        while (arr[index]> arr[(index-1)/2]){   //当前结点小于父节点或当前结点为根结点都会停止。
            swap(arr, index, (index-1)/2);
            index = (index-1)/2;
        }
    }
    /*******下沉******/
    public static void heapify(int[] arr, int index, int heapSize){
        int left = index*2+1;
        while(left < heapSize){
            int largest = left+1<heapSize && arr[left]<arr[left+1]   //
                          ? left+1   //左右孩子存在时,右孩子更大时
                          : left;    //右孩子不存在或左孩子大时
            largest = arr[largest] < arr[index] ? index: largest;  //比较当前结点和左右孩子
            if (largest == index) break;               //当前结点比左右孩子大,那么不用变换
            //左或右孩子比当前结点大,则交换
            swap(arr, index, largest);
            index = largest;
            left = index*2+1;
        }
    }
    /******交换函数******/
    public static void swap(int[] arr, int i, int j){
        int temp = arr[i];
        arr[i] = arr[j];
        arr[j] = temp;
    }
  }

时间复杂度:初始化堆:log1+log2+…+logn = O(n)
heapify过程,一共调用n次heapify, heapify()时间复杂度为O(logn),即O(nlogn)
所以时间复杂度为:O(n) + O(nlogn) = O(nlogn).


桶排序

不基于比较而是基于桶. 与被排序的数据状况有关,并不常用
时间复杂度O(n) ,空间复杂度O(n) .稳定的排序。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值