自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(13)
  • 收藏
  • 关注

原创 随机森林:一个强大的分类预测算法(附数据源码)

摘要:随机森林是一种基于集成学习的强大分类算法,通过构建多棵决策树并综合其预测结果来提高准确率。其核心原理包括数据随机采样、特征随机选择的双重随机性机制,以及多数投票或平均值的预测方式。相比单一决策树,随机森林具有抗过拟合能力强、处理高维数据效率高、内置特征重要性评估等优势。实验部分展示了在乳腺癌数据集上的应用流程,包括数据加载、模型训练、预测评估及可视化(混淆矩阵、ROC曲线)。随机森林在分类任务中表现出高准确率(示例准确率达0.9649)和稳定性,适用于各类机器学习场景。

2026-01-12 20:27:04 150

原创 DT:一个强大的分类预测算法(附数据源码)

本文介绍了决策树分类预测的原理与实践应用。首先阐述了决策树的基本概念和构建过程,包括特征选择、节点分裂、递归构建和剪枝处理等关键步骤。其次通过对比分析,展示了决策树相对于逻辑回归、支持向量机等算法的优势与不足。最后以乳腺癌数据集为例,详细演示了从数据加载、模型训练到评估预测的完整流程,并提供了可视化分析方法(学习曲线、特征重要性等)和模型保存方案。全文包含完整的Python实现代码,读者可通过指定方式获取相关数据和源码。

2026-01-11 12:22:44 666

原创 最强分类预测算法算法:SVM(附数据源码)

本文介绍了支持向量机(SVM)分类预测原理及其在乳腺癌诊断中的应用。SVM通过寻找最优超平面实现最大间隔分类,利用核技巧处理非线性问题,具有高维空间有效性、泛化能力强等优势。文章详细展示了基于Python的SVM实现流程,包括数据加载、模型训练、预测评估等步骤,使用乳腺癌数据集进行测试,准确率达98.25%。通过绘制学习曲线、混淆矩阵等可视化结果,直观展示了模型性能。完整代码可通过微信公众号获取,适用于医学诊断等分类场景。

2026-01-10 13:29:07 559

原创 KNN:一个最强时间序列预测算法(附数据源码)

本文介绍了KNN算法在时间序列预测中的应用。KNN通过"历史重演"原理,将时间序列转换为监督学习问题,利用滑动窗口技术匹配相似历史模式进行预测。相比ARIMA、LSTM等算法,KNN具有无需模型假设、训练速度快、可解释性强等优势,特别适合周期性明显的中小规模数据集。文章详细展示了KNN时间序列预测的完整实现流程,包括数据预处理、模型训练、预测评估等环节,并提供了MSE、RMSE、MAE、MAPE、R²等评估指标的计算方法。完整代码和数据可通过指定微信公众号获取。

2026-01-09 20:15:34 1147

原创 如何利用python实现文件的自动整理归档(附Python代码)

本文介绍了一个用Python编写的文件自动整理脚本。该脚本通过定义文件类型分类字典(如图片、视频、文档等)和排除规则(如系统文件),自动将下载文件夹中的文件分类存储到对应子文件夹中。主要功能包括:识别文件扩展名进行分类、处理同名文件(添加时间戳)、记录操作日志和统计整理结果。脚本避免了手动整理文件的繁琐,同时通过排除系统文件确保安全性。完整代码可通过指定微信公众号获取。

2026-01-08 20:26:39 363

原创 LightBGM:一个最强时间序列预测算法(附数据源码)

摘要:本文介绍了基于LightGBM的时间序列预测方法,通过特征工程将时间序列转换为监督学习问题,利用决策树集成和直方图算法提升效率。相比传统方法,LightGBM具有计算高效、内存占用低、支持并行处理等优势,并能自动处理特征交互和缺失值。文章提供了完整的Python实现流程,包括数据加载、特征构造、模型训练与评估,并展示了特征重要性分析。该方法无需平稳性假设,训练速度快于RNN/LSTM,适合处理包含季节性的复杂时间序列模式。

2026-01-07 20:31:56 812

原创 如何利用Python绘制高级的颜色渐变密度散点图(附数据源码)

本文介绍了颜色渐变密度散点图在时间序列预测分析中的应用价值。该图表通过颜色深浅反映数据点密度,能直观展示预测值与真实值关系,揭示误差分布模式,并区分训练/测试集性能。文章详细阐述了机器绘制原理,包括数据准备、密度计算、颜色映射和可视化优化等步骤。相较于传统散点图,密度散点图能解决过度绘制问题,提供更全面的分布洞察,增强视觉对比效果,并集成多维度评估信息。文章还提供了Python实现代码,包含20种预设渐变色方案和关键评估指标计算功能。这种可视化工具能有效提升模型性能评估的直观性和专业性。

2026-01-03 14:30:07 1225

原创 最强时间序列预测算法:Adaboost(附数据源码)

本文介绍了Adaboost算法在时间序列预测中的应用。Adaboost通过集成多个弱学习器(如决策树)构建强学习器,其加权训练机制能自适应调整样本权重,使模型更关注预测错误的样本。相比传统统计方法,Adaboost无需严格假设,能处理非线性关系和多变量数据;相比单一模型和其他集成方法,具有更好的泛化能力和对困难样本的敏感性;相比深度学习,计算效率更高且更易解释。文章详细展示了数据准备、特征工程、模型构建、评估指标计算和可视化分析的全过程,并通过实例验证了Adaboost在时间序列预测中的有效性,特别适用于中

2026-01-02 16:57:48 1113

原创 DBSCAN:一个强大的聚类算法(附数据源码)

本文详细介绍了DBSCAN聚类算法及其在鸢尾花数据集上的应用。DBSCAN基于密度聚类,能自动发现任意形状的簇并识别噪声点,无需预设簇数。文章通过对比实验展示了DBSCAN相对于K-means等算法的优势,包括处理噪声能力、形状适应性和参数稳定性。提供了完整的Python实现代码,包含数据预处理、参数调优、聚类评估和可视化分析。实验结果表明,DBSCAN能有效识别鸢尾花的自然分组,同时检测异常值。文章还总结了DBSCAN的适用场景和局限性,为实际应用提供了指导。

2026-01-01 00:24:33 960

原创 最强聚类算法:GMM(附数据源码)

本文详细介绍了高斯混合模型(GMM)聚类算法的原理、实现及应用。GMM基于概率模型假设数据由多个高斯分布混合生成,通过EM算法迭代优化参数,实现软分配聚类。相比K-means等硬聚类方法,GMM能更好地处理边界模糊的数据分布,并提供聚类不确定性量化。文章以鸢尾花数据集为例,展示了GMM的完整实现流程,包括数据标准化、模型训练、评估指标计算和可视化分析。实验结果表明GMM能有效识别数据中的自然分组,调整兰德指数达0.62,平均纯度0.96。通过比较不同协方差类型和聚类数,验证了GMM的灵活性。GMM特别适用于

2026-01-01 00:23:28 914

原创 最强时间序列预测算法:LSTM(附数据源码)

本文介绍了LSTM(长短期记忆网络)在时间序列预测中的应用。LSTM是一种特殊的RNN,能有效解决传统RNN在处理长序列时的梯度消失/爆炸问题。文章详细阐述了LSTM的适用场景(如气象、股价等长期依赖数据),并提供了完整的实现代码框架,包括数据预处理、模型构建、训练评估等模块。代码示例展示了如何使用Python和Keras构建LSTM模型,包含数据归一化、模型训练、预测评估及可视化等功能。文章最后指出LSTM的核心价值在于解决长期依赖问题、捕捉复杂模式,并提供了获取完整数据和源码的方式。

2025-12-31 08:40:05 351

原创 ELM:一个强大的时间序列算法(附数据源码)

优势维度具体表现计算效率训练速度比传统神经网络快10-1000倍实现简单无需复杂调参,主要调整隐藏节点数全局最优解析解确保找到全局最优输出权重泛化性能理论证明具有良好的泛化能力数值稳定避免梯度消失/爆炸问题极限学习机作为一种高效、简单、性能良好速度优势:训练速度远超传统迭代算法实现简便:无需复杂调参,易于部署理论保证:具有数学上的最优性保证适用广泛:适用于多种时间序列类型然而,ELM并非万能解决方案,其随机初始化的特点可能导致结果不稳定,且对长期依赖关系的建模能力有限。在实际应用中,建议:对。

2025-12-30 10:51:16 669

原创 最强时间序列预测工具:xgboost(附数据源码)

XGBoost是一种强大且灵活的机器学习算法,在时间序列预测中,通过适当的特征工程(如滞后特征、时间特征)可以取得很好的效果。然而,对于具有复杂长期依赖的时间序列,可能需要更专门的序列模型(如LSTM)来获得更好的性能。XGBoost不仅使用一阶梯度信息(类似于损失函数的斜率,告诉我们预测偏差的方向和大小),还创新性地使用了二阶梯度信息(类似于损失函数的曲率,告诉我们误差变化的速率)。这相当于给模型戴上了"紧箍咒",既允许它学习数据中的真实模式,又防止它过分关注数据中的随机波动。6.保存训练好的模型。

2025-12-30 10:34:43 1092

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除