刷刷刷 Day 38 | 509. 斐波那契数

509. 斐波那契数
LeetCode题目要求

斐波那契数 (通常用 F(n) 表示)形成的序列称为 斐波那契数列 。该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和。也就是:

F(0) = 0,F(1) = 1
F(n) = F(n - 1) + F(n - 2),其中 n > 1

给定 n ,请计算 F(n) 。

示例

输入:n = 2
输出:1
解释:F(2) = F(1) + F(0) = 1 + 0 = 1

输入:n = 3
输出:2
解释:F(3) = F(2) + F(1) = 1 + 1 = 2
解题思路

要用一个一维 dp 数组来保存递归的结果
五部曲

  1. 确定dp数组以及下标的含义 dp[i]的定义为:第i个数的斐波那契数值是dp[i]
  2. 确定递推公式:状态转移方程 dp[i] = dp[i - 1] + dp[i - 2];
  3. dp数组如何初始化:dp[0] = 0; dp[1] = 1;
  4. 确定遍历顺序:dp[i] 依赖 dp[i - 1] 和 dp[i - 2],遍历顺序是从前到后遍历的
  5. 举例推导dp数组:当N为10的时候,dp数组应该是如下的数列:0 1 1 2 3 5 8 13 21 34 55

上代码

class Solution {
    public int fib(int n) {
        if (n <= 1) {
            return n;
        }

        // 1 确定数组 dp
        int[] dp = new int[n+1];
        
        // 3 dp 初始化
        dp[0] = 0;
        dp[1] = 1;

        // 4 遍历顺序
        for (int i = 2; i <= n; i++) {
            // 2 递推公式
            dp[i] = dp[i-1] + dp[i-2];
        }

        return dp[n];
    }
}

精简版

class Solution {
    public int fib(int n) {
        if (n < 2) return n;
        int a = 0, b = 1, c = 0;
        for (int i = 1; i < n; i++) {
            c = a + b;
            a = b;
            b = c;
        }
        return c;
    }
}

递归法

class Solution {
    public int fib(int n) {
        if (n < 2) return n;
        return fib(n-1) + fib(n-2);
    }
}
重难点

理解五部曲

附:学习资料链接

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值