前K个高频元素
题目地址
知识点:堆排序,元素频数统计
解题思路:使用map统计元素出现频次,之后可以对词频排序,由于题目要求小于nlogn得时间复杂度,可以选择堆排序。排序也可以用lambda函数自定义
struct cmp
{
bool operator()(pair<int, int> a, pair<int, int> b)
{
return a.second < b.second;
}
};
class Solution {
public:
vector<int> topKFrequent(vector<int>& nums, int k) {
map<int, pair<int, int>> freq;
for (int num: nums)
{
if (!freq.count(num))
freq[num] = {num, 0};
freq[num].second++;
}
priority_queue<pair<int, int>, vector<pair<int,int>>, cmp> pq;
for(auto& p: freq)
{
pq.push(p.second);
}
vector<int> res;
for (int i = 0; i < k; i++)
{
res.push_back(pq.top().first);
pq.pop();
}
return res;
}
};
递增的三元子序列
题目地址
知识点:双指针法,没啥知识点,考察一眼洞悉问题本质的能力
解题思路:
- 两个数组,分别前后扫描,保存当前位置i前面的最小值,和后面的最大值,之后再线性遍历,检查是否有一个位置i使得 forward[i] < nums[i] < backward[i]
- 两个指针,small,middle,一遍扫描,如果小于small,更新small,else if小于middle,更新middle,如果大于middle,返回true
class Solution {
public:
bool increasingTriplet(vector<int>& nums) {
if (nums.size() < 3)
return false;
vector<int> forward(nums.size(), 0);
vector<int> backward(nums.size(), 0);
int min = nums[0];
int max = nums[nums.size()-1];
for (int i = 1; i < nums.size() - 1; i++)
{//前序扫描,保存最小值
forward[i] = min;
if (nums[i] < min)
min = nums[i];
}
for (int i = nums.size()-2; i >= 0; i--)
{//倒序扫描,保存最大值
backward[i] = max;
if (nums[i] > max)
max = nums[i];
}
for (int i = 1; i < nums.size()-1; i++)
if (nums[i] > forward[i] && nums[i] < backward[i])
return true;
return false;
}
};
和等于k的最长子数组长度
题目地址
知识点:map的使用
解题思路:求到当前位置累计和,以累计和为k记录最小的位置,到位置j时,累计和为sum,如果sum-k在map中存在,那么就存在和为k的子序列,为j-map[sum-k]+1;map[sum] = j + 1
class Solution {
public:
int maxSubArrayLen(vector<int>& nums, int k) {
std::map<int, int> preSum;
int sum = 0;
preSum[0] = 0;
int res = 0;
for (int i = 0; i < nums.size(); i++)
{
sum += nums[i];
if (!preSum.count(sum))
preSum[sum] = i+1;
if (preSum.count(sum - k))
res = std::max(res, i - preSum[sum-k] + 1);
}
return res;
}
};
验证二叉树的前序序列化
题目地址
知识点:树的前序遍历
解题思路:初始化一个栈,遍历树元素。遇到“#”,如果栈为空,那么返回false;如果栈顶为“#”,那么就要剪枝,如果pop出栈顶的“#”,后栈为空或者栈顶不是数字,返回false;如果是数字,和后面两个“#”,一起剪枝,并向栈中push一个“#”,如果此时栈顶是“#”返回一开始的逻辑处理,反之,遍历下一个元素。
class Solution {
public:
bool isValidSerialization(string preorder) {
vector<string> sq;
vector<string> str;
string tmp = "";
for (int i = 0; i < preorder.size(); i++)
{
if (preorder[i] == ',')
{
if (preorder[i-1] == '#')
str.push_back("#");
else
{
str.push_back(tmp);
tmp = "";
}
}
else if (preorder[i] == '#') {}
else
tmp += to_string(preorder[i]);
}
if (preorder[preorder.size()-1] == '#')
str.push_back("#");
else
str.push_back(tmp);
if (preorder == "#")
return true;
for (int i = 0; i < str.size(); i++)
{
if (str[i] == "#")
{
if (sq.size() < 1)
return false;
while (sq.size() > 0 && sq[sq.size()-1] == "#")
{
sq.pop_back();
if (sq.size() < 1 || sq[sq.size()-1] == "#")
return false;
sq.pop_back();
}
sq.push_back(str[i]);
}
else
sq.push_back(str[i]);
}
return sq.size() == 1 && sq[0] == "#";
}
};
整数拆分(剪绳子)
题目地址
知识点:找规律,动态规划
解题思路:
比较经典的一道题,剪绳子和这个是一个问题
- 找规律,没太看明白,可以到题目地址的题解中看
- 动态规划,dp[i]中存储了数字i的最大拆分乘积值。某一个数字可以选择拆分或者不拆分,位置i的值可以通过拆分成(m+n),拆分不拆分有四种组合,动态规划状态转移方程是dp[i] = max(dp[m] * n, dp[n] * m, dp[m] * dp[n], m * n)
class Solution {
public:
int integerBreak(int n) {
vector<int> dp(n+1, 0);
dp[1] = 0;
dp[2] = 1;
for(int i = 3; i <= n; i++)
{
for (int j = 1; j <= i / 2; j++)
{
vector<int> poss = {j*(i-j), j*dp[i-j], dp[j]*(i-j), dp[j]*dp[i-j]}; //拆分不拆分的四种组合
for (int pos: poss)
dp[i] = std::max(dp[i], pos); //求四种组合的最大值
}
}
return dp[n];
}
};