- 用到的函数及含义
- rank(x) = cross-sectional 横截面排名,用于排序。
- delay(x, d) = value of x d days ago 对x回溯d天,d天前x的值,相当于x.shift(d),用于回溯。
- correlation(x, y, d) = time-serial correlation of x and y for the past d days 过去d天中 x 与 y的相关系数看,表征两变量之间的相关性,与covariance相比,该值是标准化后的相对值,在-1到1之间。
- covariance(x, y, d) = time-serial covariance of x and y for the past d days 过去d天中x与y的协方差,表征两变量偏离的同步性,与correlation相比,该值是标准化前的绝对值。
- scale(x, a) = rescaled x such that sum(abs(x)) = a (the default is a = 1) 将X扩大a倍,线性缩放函数,。
- delta(x, d) = today’s value of x minus the value of x d days ago 现在的x值减去d天前的x值,表示变化量。
- signedpower(x, a) = x^a 以x为底、a为指数的幂函数。
- decay_linear(x, d) = weighted moving average over the past d days with linearly decaying weights d, d – 1, …, 1 (rescaled to sum up to 1) 对过去d天的数据做线性权重递减,每天递减1,权重按时间从远到近依次为 d, d-1, ..., 1(标准化后总和为 1)。
- indneutralize(x, g) = x cross-sectionally neutralized against groups g (subindustries, industries,sectors, etc.), i.e., x is cross-sectionally demeaned within each group g. 对x在g组别(g这里指细分行业,如申万一级/申万二级)中进行横截面中性化处理。可以理解为对组内进行统一标准化,这样保留了组内数据的差异性,消除了组间数据由于不同分组造成的差异性。例如,金融行业和科技行业本身由于行业区分,不同行业间的股票可比性较差,进行行业中性化处理后就可能存在一定可比性,通常是将分组内的x相加求和得到sumx后使用参数 x/sumx 进行中性化的处理从而消除行业自身的特异性。
- ts_{O}(x, d) = operator O applied across the time-series for the past d days; non-integer numberof days d is converted to floor(d) 定义为对时间序列数据 x 在过去的 d 天(非整数 d 取 floor(d))应用运算符 O 的滚动计算。
- ts_min(x, d) = time-series min over the past d days 定义为计算时间序列 x 在最近 d 个交易日内的滚动最小值。
- ts_max(x, d) = time-series max over the past d days 定义为计算时间序列 x 在最近 d 个交易日内的滚动最大值。
- ts_argmax(x, d) = which day ts_max(x, d) occurred on 定义为在时间序列 x 的最近 floor(d)个交易日窗口中,确定最大值 ts_max(x, d) 出现的相对天数(窗口最远的天为第 floor(d) 天,最近为第 1 天)
- ts_argmin(x, d) = which day ts_min(x, d) occurred on 定义为在时间序列 x 的最近 floor(d) 个交易日窗口中,确定最小值 ts_min(x, d) 出现的相对天数(窗口最远的天为第 floor(d) 天,最近为第 1 天)
- ts_rank(x, d) = time-series rank in the past d days 定义为计算时间序列 x 在最近 floor(d) 个交易日内当前值在窗口中的百分比排名(正则化至 [0,1] 区间)
- min(x, d) = ts_min(x, d) min与ts_min含义相同
- max(x, d) = ts_max(x, d) max与ts_max含义相同
- sum(x, d) = time-series sum over the past d days 过去d天x的合计值
- product(x, d) = time-series product over the past d days过去d天的x的乘积
- stddev(x, d) = moving time-series standard deviation over the past d days 过去d天x的标准差
- 输入的参数及含义
- returns = daily close-to-close returns 每日收盘价收益率
- open, close, high, low, volume = standard definitions for daily price and volume data 开盘价、收盘价、最高价、最低价、成交量
- vwap = daily volume-weighted average price 每日的带成交量权重的平均价,日级成交量加权平均价
- cap = market cap 市值 股价*已发行股总数
- adv{d} = average daily dollar volume for the past d days 过去d天的日均成交额
- IndClass = a generic placeholder for a binary industry classification such as GICS, BICS, NAICS,SIC, etc., in indneutralize(x, IndClass.level), where level = sector, industry, subindustry, etc.Multiple IndClass in the same alpha need not correspond to the same industry classification. 行业分类占位符,可以通过IndClass.level指定行业分类的详细程度或者分类方式,同一因子下的行业分类无需属于同一行业分类标准。
101 Formulaic Alphas 中的函数及输入值参数释义
于 2025-04-23 09:06:56 首次发布