1910
人工智能指标(2007-2023)
数据简介
研究人工智能指标的原因在于人工智能技术对实现经济的高质量发展具有重要意义。其研究价值体现在:通过构建企业层面的人工智能指标,发现人工智能能显著提升中国上市公司的生产率,揭示了人工智能通过调整企业劳动力技能结构来提升生产率的机制,同时还能探究企业层面因素和行业、地区层面因素对人工智能生产率效应的影响,进而加深对微观企业层面人工智能在生产过程中所扮演角色的认知和理解,并为在微观企业层面推动人工智能技术发展提供建议。
本团队参考姚加权等(2024)的文章,通过上市公司年报、年报MD&A部分以及上市公司专利摘要和标题文本,构建了三个人工智能指标。主要步骤如下:对于年报部分数据,首先根据姚加权等(2024)文章中提供的人工智能词典对文本数据进行分词,随后取文本中人工智能词频加1取对数即得到人工智能指标;对于专利数据,首先对标题和摘要文本进行分词,分词后包含人工智能相关关键词的专利则记为人工智能专利,企业每年的人工智能专利数加1取对数则为人工智能专利指标。
数据来源
由数据皮皮侠团队人工整理,全部内容真实有效
时间跨度
2007-2023年
数据范围
国内上市公司专利、年报数据
数据格式
数据格式为Excel形式
数据指标
股票代码 | 年份 | 公司名称 | 人工智能指标_年报 | 人工智能指标_MDA | 人工智能指标_专利 |
数据展示
参考文献
姚加权,张锟澎,郭李鹏,等.人工智能如何提升企业生产效率?——基于劳动力技能结构调整的视角[J].管理世界,2024,40(02):101-116+133+117-122.DOI:10.19744/j.cnki.11-1235/f.2024.0018.
声明:本数据由数据皮皮侠团队整理,仅用于学术研究