小白读论文:机器学习的安全威胁和防御技术(上)——常见的安全威胁

论文:Q. Liu et al. 2018. Survey on Security Threats and Defensive Techniques of Machine Learning: A Data Driven View. IEEE ACCESS.

个人感觉这篇综述很全面,但是时间比较早、有些地方写得不太好(本人在机器学习模型领域是纯小白,只是根据之前所在学科的论文经验以及阅读体验所以这么说,请轻喷),适合新手入门了解。部分涉及我个人的知识盲区,因此在对应处附上了个人觉得不错的解释链接。

欢迎大家一起交流学习,也欢迎指出我理解错误的地方。

目录

安全威胁分类:

对机器学习的安全威胁:

训练阶段的安全威胁:

中毒攻击:

不修改特征/标签:

修改特征/标签:

预测阶段的安全威胁:

Evasion(入侵攻击):

Impersonate(模仿攻击):

Inversion(反向攻击):


安全威胁分类:

从3个角度进行分类:对分类器的影响、安全入侵、攻击特异性

1.对分类器的影响:

(1)诱因攻击

改变训练集数据的分布,使得重新学习后的参数改变,导致分类器在后续分类中性能下降

(2)探索性攻击

造成对抗样本的错误分类或者揭露训练数据和学习模型中的敏感信息

2. 安全入侵:

(1)完整性攻击

当分类有害样本时,这种攻击会增加现有分类器的假阴性

(2)可用性攻击

这样的攻击会引起分类器在处理良性样本时的假阳性率增加

(3)隐私侵犯攻击

攻击者能从训练集和学习模型中获取敏感和机密信息

3. 攻击特异性:

(1)目标攻击

高针对性降低分类器对某一组或某一个样品的分类性能

(2)无区别攻击

分类器不区分地在大范围样本上分类失败

对机器学习的安全威胁

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值