一、简介
隐私集合求交集一直是安全多方计算的热门方向之一,顾名思义,隐私集合求交(以下称PSI)允许双方在不向对方揭示交集以外的元素的情况下,令双方求出集合中的交集。PSI的应用非常广泛,比如隐私保护文档的检测,婚恋网站配对,私有联系人发现等等。而在一些场景当中,我们不关心交集的元素具体是哪些,我们更为关心交集的具体大小,换言之,我们更关心两个集合是否足够相似,在这样的需求下,针对门限PSI的研究应运而生。门限PSI(以下称TPSI)的含义是,当双方集合中相同的元素大于门限时,才会输出交集。在这里需要引入一个概念,对称差。在构造方案时为了方便起见,我们一般将双方集合的大小视为相同(如果双方集合大小不同,可以加入一些随机元素使双方大小相同)。双方中,一方的对称差即是集合中除了交集之外的元素。所以,当双方集合大小相同时,对称差越大,也就意味着双方集合的交集越小,即集合越不相似。本文中的门限就是针对于对称差设置的。具体而说,在一次TPSI中,当双方集合的交集大小大于门限(n-t),即一方的对称差小于t时,我们才会进行求交集的操作。
二、基于有理式进行求交集的数学原理
在两方A和B对双方的隐私集合(和
)求交集时,有多种考虑到隐私保护的方式,像是简单哈希,茫然伪随机函数(OPRF),多项式等