NOIp模拟赛Day17 月亮模拟VIII A

题目描述

给出 A B,求:

d|ABd

输入描述

两个非负整数 A B

输出描述

仅一个正整数,表示答案

输入样例

2 3

输出样例

15

样例解释

23=8812481+2+4+8=15

数据范围

AB1012


质因数分解 AB

AB=pk11pk22...pknn


Sum=(1+p1+p21+...+pk11)(1+p2+p22+...+pk22)...(1+pn+p2n+...+pknn)

等比数列求和公式或分治计算 Sum
O(log2n)


#include <cstdio>
#include <algorithm>
#include <cmath>

typedef long long ll;

const int N = (int)1e6+5, mo = 9901;

ll A, B;
int p[N], num[N];
ll ans;

inline ll pow(ll x, ll n) {
    x %= mo;
    ll tmp = x, ret = 1;
    while(n) {
        if(n&1) ret = (ret*tmp)%mo;
        tmp = (tmp*tmp)%mo;
        n >>= 1;
    }
    return ret;
}

inline ll Sum(ll x, ll n) {return (pow(x,n+1)-1)*pow(x-1,mo-2)%mo;}

inline ll Re() {
    ll x = 0; char ch=getchar(); bool f = 0;
    for(; ch>'9'||ch<'0'; ch=getchar()) if(ch=='-') f = 1;
    for(; ch>='0'&&ch<='9'; ch=getchar()) x = (x<<1)+(x<<3)+ch-48;
    if(f) return -x;
    return x;
}

inline void prework() {
    int lim = (int)sqrt(A);
    for(int i=2;i<=lim;++i)
        if(A%i==0) {
            p[++p[0]] = i;
            while(A%i==0) {
                num[p[0]]++;
                A /= i;
            }
        }
    if(A>1) {
        p[++p[0]] = A;
        num[p[0]] = 1;
    }
}
int main() {
    A = Re(); B = Re();

    prework();

    ans = 1;
    for(int i=1;i<=p[0];++i) ans = ans*Sum(p[i],num[i]*B)%mo;

    printf("%lld\n",ans);
    return 0;
}
内容概要:本文档提供了三种神经网络控制器(NNPC、MRC和NARMA-L2)在机器人手臂模型上性能比较的MATLAB实现代码及详细解释。首先初始化工作空间并设定仿真参数,包括仿真时间和采样时间等。接着定义了机器人手臂的二阶动力学模型参数,并将其转换为离散时间系统。对于参考信号,可以选择方波或正弦波形式。然后分别实现了三种控制器的具体算法:MRC通过定义参考模型参数并训练神经网络来实现控制;NNPC利用预测模型神经网络并结合优化算法求解控制序列;NARMA-L2则通过两个神经网络分别建模f和g函数,进而实现控制律。最后,对三种控制器进行了性能比较,包括计算均方根误差、最大误差、调节时间等指标,并绘制了响应曲线和跟踪误差曲线。此外,还强调了机器人手臂模型参数的一致性和参考信号设置的规范性,提出了常见问题的解决方案以及性能比较的标准化方法。 适合人群:具备一定编程基础,特别是熟悉MATLAB编程语言的研究人员或工程师,以及对神经网络控制理论有一定了解的技术人员。 使用场景及目标:①理解不同类型的神经网络控制器的工作原理;②掌握在MATLAB中实现这些控制器的方法;③学会如何设置合理的参考信号并保证模型参数的一致性;④能够根据具体的性能指标对比不同控制器的效果,从而选择最适合应用场景的控制器。 其他说明:本文档不仅提供了完整的实验代码,还对每个步骤进行了详细的注释,有助于读者更好地理解每段代码的功能。同时,针对可能出现的问题给出了相应的解决办法,确保实验结果的有效性和可靠性。为了使性能比较更加公平合理,文档还介绍了标准化的测试流程和评估标准,这对于进一步研究和应用具有重要的指导意义。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值