HOG(histogram of oriented gradients)特征个人总结

本文详细介绍了HOG(Histogram of Oriented Gradients)特征,包括图像预处理、梯度计算、直方图构造、归一化块处理和特征向量计算等步骤,适用于计算机视觉中的物体检测。通过实例解析,展示了HOG特征如何增强对环境光的抗干扰能力,并探讨了其优缺点。
摘要由CSDN通过智能技术生成

前述

前段时间参加了一项无人飞行器竞赛,用到了HOG+SVM经典算法识别被测物体。赛后系统的查看论文、博客,对HOG特征进行总结。

HOG特征概述

HOG的全称是histogram of oriented gradients,即梯度方向直方图。在2005年,由Dr. Mubarak Shah在CVPR 2005上的论文Histograms of Oriented Gradients for Human Detection 中首次提出。HOG特征作为一种特征描述子,主要用于计算机视觉和图像处理中的物体检测。下面讲一下HOG特征的组成部分。
HOG特征是通过计算和统计图像局部区域的梯度方向直方图来构成的特征。如下图所示,HOG特征提取将图片分成窗口(window)、块(block)、单元(cell)、区间(bin)。其中窗口大小是块的整数倍,块在窗口内以某一固定步长进行滑动;块是单元的整数倍,块刚好可以填满整数倍的单元,并且梯度的计算也在单元内进行;区间是直方图内的横轴的区间,由于HOG特征是以梯度方向为横轴,需要对方向规定角度范围。根据上述论文得到,窗口的大小64x128,块的大小为16x16,步长为8,单元的大小为8x8,区间为9,效果最好。HOG特征算法提取如下。
在这里插入图片描述

HOG特征提取

图像预处理

如图所示,首先,我们将图片中的检测目标通过感兴趣区域(ROI)的方式提取出来,然后将ROI的大小缩放为 64 × 128 64\times128 64×128.然后,我们可以对图像进行伽马校正和灰度化。这两步可做可不做,对实验结果影响不大。其中伽马矫正可以调节图像对比度,减少光照对图像的影响(光照不均和局部阴影),修正过曝或者欠曝的图像。灰度化是将彩色图转换成灰度图,可以直接对彩色图做处理,先对彩色图做通道分离,然后分别对通道计算,采用梯度权值最大的通道作为该像素的梯度权值(即直方图的纵轴变量)。

在这里插入图片描述

计算梯度

HOG特征的方向梯度是以cell为单元,如下图a所示为图像中某一cell中的元素P以及其邻域像素值,图b为梯度方向的水平和垂直方向内核,分别用于计算水平梯度和垂直梯度。

在这里插入图片描述 在这里插入图片描述
a. 区间cell中某一像素 b. 梯度计算的水平和垂直方向内核

先计算像素 P P P的水平梯度和垂直梯度,即水平梯度为 P x = c − a P_x=c-a Px=ca,垂直梯度为 P y = d − b P_y=d-b Py=db.则每个像素的梯度权值和梯度方向为
P = P x 2 + P y 2 P=\sqrt{P_x^2+P_y^2} P=Px2+Py2</

1. Viola-Jones算法: 优点: - 算法速度非常快,能够在实时系统中使用 - 算法对于不同的目标具有较好的泛化性能,可以应用于人脸识别、人体检测等多个领域 缺点: - 对于遮挡、光照变化、角度变化等因素敏感,准确率有限 - 对于非正面的人脸检测效果较差 - 对于目标的大小、旋转角度等要求较高,需要对输入图像进行预处理 2. HOG算法: 优点: - 算法对于光照变化、遮挡等因素具有一定的鲁棒性,能够在一定程度上保持检测的准确性 - 算法能够在不同的尺度下进行目标检测,对于不同大小的目标具有较好的适应性 缺点: - 算法对于目标的姿态、旋转角度等变化较为敏感,需要进行预处理 - 算法对于背景噪声较大的情况下,会对检测结果产生影响 3. YOLO算法: 优点: - 算法速度较快,能够在实时系统中使用 - 算法能够在单个网络中完成目标检测和分类,具有较高的精度和召回率 - 算法对于目标的姿态、旋转角度等变化较为鲁棒 缺点: - 算法对于小目标的检测准确率较低 - 算法对于密集目标的检测准确率较低 - 算法对于目标的长宽比例较大的情况下,检测效果不佳 4. CNN算法: 优点: - 算法能够自动学习特征,无需手工提取,具有较高的鲁棒性和准确性 - 算法对于目标的姿态、旋转角度等变化较为鲁棒 - 算法在图像分类、目标检测等多个领域具有广泛的应用 缺点: - 算法需要大量的计算资源和数据集支持,训练时间较长 - 算法对于数据集的质量要求较高,需要进行预处理 - 算法的可解释性较差,难以理解和解释其决策过程 5. MTCNN算法: 优点: - 算法能够同时完成人脸检测、关键点检测和人脸对齐等任务,具有较高的精度和鲁棒性 - 算法对于不同尺度、姿态、光照等因素具有较好的适应性和泛化性能 缺点: - 算法运行速度较慢,对于实时系统应用有一定限制 - 算法对于遮挡、模糊等情况下的检测效果较差 - 算法对于不同种族、年龄等差异较大的人脸检测效果有限
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值