Daisy

喜欢这个名字,无它。

daisy描述子是较为快捷的一种局部描述子,是在sift和gloh算子的基础上建立的。

      sift是特征点匹配算子。是在尺度空间的基础上寻找特征点并进一步特征匹配,sift算子可以把方向和尺度独立开来进行研究。

流程如下:利用高斯核进行不同尺度的卷积运算,并得到差分结果,对原影像反复进行2被重采样,的进而形成高斯金字塔;

在尺度空间根据一定的测度得到特征点,并去除不理想的点位,然后在另一幅影像中遍历特征点根据距离测度得到最佳的前2个匹配点位;

如果最近的匹配点和次近的匹配点的比值为0.8,则接受这对匹配点。

       sift算子具有良好的旋转不变形,它在空间尺度中寻找极值点,并提取出其位置、尺度、旋转不变量,

       SIFT算法的特点:1. SIFT特征是图像的局部特征,其对旋转、尺度缩放、亮度变化保持不变性,对视角变化、仿射变换、噪声也保持一定程度的稳定性;2. 独特性(Distinctiveness)好,信息量丰富,适用于在海量特征数据库中进行快速、准确的匹配;3. 多量性,即使少数的几个物体也可以产生大量的SIFT特征向量;4. 高速性,经优化的SIFT匹配算法甚至可以达到实时的要求;5. 可扩展性,可以很方便的与其他形式的特征向量进行联合。

SIFT描述子 是一个3D梯度位置方向直方图,位置被量化到4×4局部栅格,梯度角度分为8个方向,算子为4×4×8=128维

       Gradient location-orientation histogram (GLOH),GLOH是SIFT描述子的一种延伸,为了增强其鲁棒性和独立性。以对数极坐标在半径方向建立三个带(6,11,15)和8个角度方向,形成17个位置带,中心带在半径方向不分块。梯度方向量化为16个带,形成272维矢量,利用PCA降维。它利用17个圆形取代了sift的location bins。我理解还不够深入,还希望大虾们留下自己对“gloh对sift的具体改进”的认知。

       daisy在此基础上,利用参数(R,Q,T,H,S,Ds)对daisy描述子的层数,圆的个数和大小进行控制,与sift和gloh的仅在部分控制点邻域处理方法不同,daisy在图像的每个像素点均有参数控制。圆形设计和各项同性的优点在于,不用重新计算卷积方向图,只对局部的一些像素和对应的直方图进行旋转重采样;圆形的各向同性的高斯核因此有良好的抗旋转变形的能力。daisy不同于gloh,它的设计立足于能够快速高效的对图像中的每一个点进行计算。算子在特定方向上与多个高斯滤波器进行卷积以取代梯度的加权和。在几何模糊性的问题上,推荐在中心使用小的模糊核,越远离中心则核越大,并且利用边缘方向滤波(oriented edge filter)。daisy遵循建议,在其外环利用大的高斯核但考虑高效性利用简单的卷积取代了边缘滤波。

目前只看了这些部分,以后会逐步追加。


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值