faster-rcnn 安装编译 1、下载:git clone --recursive https://github.com/rbgirshick/py-faster-rcnn.git2、cd $FRCN_ROOT/libmake3、cd $FRCN_ROOT/caffe-fast-rcnn# Now follow the Caffe installation instructions he
ssd画loss和accuracy曲线 (一)ssd的log文件保存在/home/myname/caffe/jobs/ 下面(四) 调用py程序绘制图形 ./plot_training_log.py.example 0 save.png /home/myname/caffe/jobs/VGGNet/VOCgoods/SSD_600x600/VGG_VOCgoods_SSD_600x6
faster r-cnn训练自己的数据 1、制作数据放在data/VOCdevkit2007/VOC2007中2、修改模型"/home/pengshengfeng/py-faster-rcnn/models/pascal_voc/VGG16/faster_rcnn_end2end/train.prototxt"1)num_classes :, 则为3(n + 背景类) 2)cls_score 层, n
yael yael是一个非常好的以图搜图的图像检索库,里面包含了很多算法。包括用来聚类的kmeans、gmm算法,还有聚合特征像向量的vlad、bof、fisher算法。现在记录下yael库配置的方法。 1、下载相应的版本 http://yael.gforge.inria.fr/gettingstarted.html 并且解压$yael_v438 2、根据官网上的介绍,安装yael需要提前一
faster-rcnn 编译问题 RBG(phthon)那个编译比较简单,没什么问题。shaorenqi(matlab)这个版本因为cudnn版本(v3)和caffe的cudnn(v4)版本不一致。注释# USE_CUDNN := 1编译。会出现一些opencv的错误。../lib/libcaffe.so: undefined reference tocv::imread(cv::String const&, int)
linux 编译flann-1.8.4-src(matlab) 1、cd flann-x.y.z-src2、mkdir build3、$ cd build4 cmake ..( 注意有两点)5 makematlab1cd:src/matlab1.nearest_neighbors.cpp文件:/*#include */#include "flann/flann.cpp" 命令: mex neares
matlab 编译loransac,lapack mex ranH.c时一直链接错误。原来mex在编译多个文件时要把所有的C文件都列出来。命令如下: mex loransacH.mex.c ranH.c utools.c Htools.c lapwrap.c matutl.c rtools.c -I'D:\lapack\headers\lapack' -L'D:\lapack' -lcbia.lib.lapack.dyn.rel.
谁欠谁的幸福 张无忌放弃了江湖与江山 他把幸福给了赵敏却把牵挂给了小昭把漂泊给了蛛儿把憾恨给了芷若……杨过和小龙女最终做了神仙眷侣也许他知道,也许他不知道也许他装作不知道程英和陆无双为他负尽青春抛尽韶华郭襄为他天涯思君念念不忘也许他记得,也许他不记得曾经有一个叫公孙绿萼的姑娘把一生停驻在他一刹那的目光里而他所能给的,也只能是一曲清箫、三枚金针或者某一刻的眷顾而已
DM6437用ATSHA204加密 本来打算外包的,但是外包价格都是5000+,感觉有点舍不得,折腾了一个星期终于弄好了。需要注意的是ATSHA204 的地址是7位的,还有sizeof在不同的系统会出现不同的错误,这个需要注意。
Daisy 喜欢这个名字,无它。daisy描述子是较为快捷的一种局部描述子,是在sift和gloh算子的基础上建立的。 sift是特征点匹配算子。是在尺度空间的基础上寻找特征点并进一步特征匹配,sift算子可以把方向和尺度独立开来进行研究。流程如下:利用高斯核进行不同尺度的卷积运算,并得到差分结果,对原影像反复进行2被重采样,的进而形成高斯金字塔;在尺度空间根据一
DPM 之前主要做DPM算法的优化以及使用,也有优化得比较好的C++代码,和原著的cascade_demo速度相比能至少提升一倍吧(效果不影响)。但是之前公司可能涉及到公司核心算法部分,并没有把训练算法给我,所以这段时间只能依靠自己和网上的文章研究DPM的训练以及和C++代码的结合使用问题。希望能自己训练自己需要的模型进行DPM算法的使用。经过两三个星期的研究,终于能自己训练自己的DPM算法了。目前,在目
vs2010和matlab2010混合编程中char16_t重定义的问题 原因是VS2010中的yvals.h添加了char16_t的定义,而Matlab的matrix.h也包含对char16_t的定义,所以同时包含这两个头文件的话,会导致重复定义char16_t的错误。只需在包含matrix.h之前包含yvals.h即可:#include #if (_MSC_VER >= 1600)#define __STDC_UTF_16__#endif#i
halcon学习1 方便学习,转载,原文地址:http://blog.csdn.net/pbimage/article/details/229881991. vs2013平台阈值化图像[cpp] view plaincopy#include "cpp/HalconCpp.h" #include "Halcon.h" #include
halcon 11与halcon 10变动 alcon11和Halcon10相比采用了新的C++接口,新接口特点如下:1) 新版本Halcon/C++接口与Halcon/.NET接口统一2) 拥有基于异常的错误处理3) 增加新类HString4) 支持数据类例如:HPose5) 使面向过程和面向对象的混合编程更加简单值得注意的是Halcon11不是向下兼容的,也就是说 Halcon11不兼容Halcon10以及之前的
ocx控件注册问题 最近在做控件开发时,遇到了一个问题,在编译控件注册输出时出现如下错误:1>C:\Program Files\MSBuild\Microsoft.Cpp\v4.0\Microsoft.CppCommon.targets(732,5): warning MSB3073: 命令“regsvr32 /s "E:\mycode\ActiveX4th\Debug\ActiveX4th.ocx"”已退出
直方图均衡化原理 关于直方图均衡化,网上文章很多,但是这篇文章是最容易看懂的。直方图均衡化的作用是图像增强。有两个问题比较难懂,一是为什么要选用累积分布函数,二是为什么使用累积分布函数处理后像素值会均匀分布。第一个问题。均衡化过程中,必须要保证两个条件:①像素无论怎么映射,一定要保证原来的大小关系不变,较亮的区域,依旧是较亮的,较暗依旧暗,只是对比度增大,绝对不能明暗颠倒;②如果是八位图
VECTOR的常用操作(更新) 1、删除:vector::iterator it;for (it = VeDetectInfo.begin();it!=VeDetectInfo.end();) {if (GetTickCount()-it->dwTime>5*60*1000){ it=VeDetectInfo.erase(it); } else { 。。。。it++;}
求图像不变距函数 void Calculate_Moment_Fea(unsigned char* Img_Data ,int Img_H ,int Img_W) { int i=0 ,j=0; unsigned char temp = 0; double m_00 =0 ,m_01 =0 ,m_10 =0; double X_c =0 ,Y_c =0