luogu P2401 不等数列

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/pretend_fal/article/details/78052557

原题位置: https://www.luogu.org/problem/show?pid=2401

这个题说是个DP,但是感觉想一个递推式;

先把式子摆出来: f[i][j] = f[i-1][j-1] * (i-j) + f[i-1][j] * (j+1) ;

那我们就要说一下这是为什么了;

首先我们要明确f[i][j]代表前i个人j个小于号;

所以我们可以假设我们有一种情况是: @<@>@<@<@>@<@ ;

因为我们是把一个大于之前所有数的数插入,所以我们可以把要插入的数记为: <#> ;

所以如果前i-1个数中有j个<,那么我们只能把<#>插入到原序列中小于号的位置或开头,那样子小于号不会变多,只会多一个大于号,读者可以自行尝试,这样的位置有j+1个(j个小于号,1个开头);

同理,如果有j-1个小于号,那我们就可以把<#>插入到大于号和最后,这样子就会多一个小于号,凑够j个,这样的位置一共有(i-2)+(1)+(1)-(1)-(j-1) = (i-j)个,i-2个空隙,1个开头,1个结尾,减掉1个开头,j-1个小于号,就好了;

—————————————并不华丽的分割线——————————————-

#include<iostream>
#include<cstdio>
#include<algorithm>
#define II int
#define R register
#define I 1005
#define PI 2015
using namespace std;


II n,k;

II f[I][I];


int main()
{
//  freopen("1.in","r",stdin);

    scanf("%d%d",&n,&k);

    for(R II i=1;i<=n;i++) f[i][0]=1; 
    for(R II i=1;i<=n;i++)
    {
        for(R II j=1;j<=k;j++)
        {
            f[i][j]+=f[i-1][j]*(j+1)+f[i-1][j-1]*(i-j);
            f[i][j]%=PI;
        }
    }

    printf("%d\n",f[n][k]);
    exit(0);
}

—————————又是一条—————————

by pretend-fal

END;

阅读更多
换一批

没有更多推荐了,返回首页