【c++】AVL树模拟实现

简介

AVL树是最先被发明出来的自平衡二叉查找树,在1962由前苏联科学家G. M. Adelson-Velsky和E. M. Landis在论文中发表。AVL树中引入了平衡因子,每一个节点都有一个平衡因子(一般是右子树高度 - 左子树高度);AVL树要求左右子树高度相差不能超过1,即平衡因子只能是0,1或-1。AVL树的高度始终是log(n),n为节点数量。

AVL树的结构



template<class K,class V>
struct AVLTreeNode   //定义节点的结构
{
	pair<K, V> _kv;
	AVLTreeNode<K, V>* _left;
	AVLTreeNode<K, V>* _right;
	AVLTreeNode<K, V>* _parent;

	int _bf;//平衡因子balance factor

	AVLTreeNode(const pair<K, V>& kv)
		:_kv(kv)
		, _left(nullptr)
		, _right(nullptr)
		, _parent(nullptr)
		, _bf(0)
	{}
};

template<class K,class V>
class AVLTree
{
	typdef AVLTreeNode<K, V> Node;
public:


private:
	Node* _root = nullptr;

};

_kv是AVL树储存的键值对,既能存储键值key,每一个key也能对应储存一个value值。

为什么要有_parent?

AVL树通过平衡因子来控制树的平衡,插入或删除数据后,需要回溯到父节点计算平衡因子,所以我们需要_parent来储存每一个节点父节点的值。

AVL树的插入 

插入的基本流程

寻找插入的位置

按照二叉树遍历的顺序找到要插入的位置。

更新平衡因子

插入一个新的节点之后,如果父节点的平衡因子发生改变,则需更新从根节点到父节点这条路径的所有节点的平衡因子。

判断是否产生不平衡

如果更新平衡因子之后,没有出现平衡因子不为0,-1,1的,则说明树是平衡的,插入结束。

如果出现了不平衡,对不平衡⼦树旋转,旋转后本质调平衡的同时,本质降低了⼦树的⾼度,不会再影响上⼀层,所以插⼊结束。

平衡因子的更新

更新的原则

平衡因⼦ = 右⼦树⾼度-左⼦树⾼度。
只有⼦树⾼度变化才会影响当前结点平衡因⼦。
插⼊结点,会增加⾼度,所以新增结点在parent的右⼦树,parent的平衡因⼦++,新增结点在
parent的左⼦树,parent平衡因⼦--。
parent所在⼦树的⾼度是否变化决定了是否会继续往上更新。

更新停止的条件

更新后parent的平衡因⼦等于0,更新中parent的平衡因⼦变化为-1->0 或者 1->0,说明更新前
parent⼦树⼀边⾼⼀边低,新增的结点插⼊在低的那边,插⼊后parent所在的⼦树⾼度不变,不会
影响parent的⽗亲结点的平衡因⼦,更新结束。
更新后parent的平衡因⼦等于1 或 -1,更新前更新中parent的平衡因⼦变化为0->1 或者 0->-1,说
明更新前parent⼦树两边⼀样⾼,新增的插⼊结点后,parent所在的⼦树⼀边⾼⼀边低,parent所
在的⼦树符合平衡要求,但是⾼度增加了1,会影响parent的⽗亲结点的平衡因⼦,所以要继续向
上更新。
更新后parent的平衡因⼦等于2 或 -2,更新前更新中parent的平衡因⼦变化为1->2 或者 -1->-2,说
明更新前parent⼦树⼀边⾼⼀边低,新增的插⼊结点在⾼的那边,parent所在的⼦树⾼的那边更⾼
了,破坏了平衡,parent所在的⼦树不符合平衡要求,需要旋转处理,旋转的⽬标有两个:1、把
parent⼦树旋转平衡。2、降低parent⼦树的⾼度,恢复到插⼊结点以前的⾼度。所以旋转后也不
需要继续往上更新,插⼊结束。
不断更新,更新到根,跟的平衡因⼦是1或-1也停⽌了。

插入的整体框架:
 



	bool insert(pair<K, V>& kv)
	{
		if (_root == nullptr)
		{
			_root = new Node(kv);

			return true;

		}

		Node* parent = nullptr;
		Node* cur = _root;
		while (cur)
		{
			if (cur->_kv.first < kv.first)
			{
				parent = cur;
				cur = cur->_right;
			}
			else if (cur->_kv.first > kv.first)
			{
				parent = cur;
				cur = cur->_left;
			}
			else
			{
				return false;//不应许插入相同的值
			}
		}
		cur = new Node(kv);
		if (cur->_kv.first < parent->_kv.first)
		{
			parent->_left = cur;
		}
		else if (cur->_kv.first > parent->_kv.first)
		{
			parent->_right = cur;

		}
		cur->_parent = parent;



		//更新平衡因子

		while (parent)
		{
			// 更新平衡因⼦
			if (cur == parent->_left)
				parent->_bf--;
			else
				parent->_bf++;
			if (parent->_bf == 0)
			{
				// 更新结束
				break;
			}
			else if (parent->_bf == 1 || parent->_bf == -1)
			{
				// 继续往上更新
				cur = parent;
				parent = parent->_parent;
			}
			else if (parent->_bf == 2 || parent->_bf == -2)
			{
				// 不平衡了,旋转处理



				break;
			}
			else
			{
				assert(false);
			}
		}

		return true;

	}

旋转

旋转的原则

1.保持搜索树的规则

2.让树变平衡,降低旋转树的高度

根据插入的位置不同,旋转一共分为四种,左单旋/右单旋/左右双旋/右左双旋

右单旋

右单旋适合处理下图这种情况,插入前,左子树高度刚好比右子树高1,且刚好插入值为在左子树最左边(比原来树中的所有值都小)。

普遍情况:

为了方便理解我们这里取特例: 

插入节点-3之后,树不再平衡。这时候就需要通过旋转来使树再次平衡。怎样让树再次平衡呢?

我们只需要操作最深的那一条路径就好了,让它高度减一,在移到右子树上,这样平衡因子就为0了。

虽然不符合AVL树的规则了,但是这颗树还是符合二叉搜索树的规则的。还是可以中序遍历。

这棵树中序遍历的结果是:-3,1,5,8,10,15。把10拿下来让左子树高度减一,再向办法把10放到右子树中,5的右子树绝对比它的父节点(10)小,所以可以把10变成5的右节点,同时让8接到10的左节点。这样即保证中序遍历的结果又使树恢复了平衡。

代码实现:


	//右单旋

	void RotateR(Node* parent)
	{
		Node* subL = parent->_left;
		Node* subLR = subL->_right;
		// 需要注意除了要修改孩⼦指针指向,还是修改⽗亲
		parent->_left = subLR;
		if (subLR)
			subLR->_parent = parent;
		Node* parentParent = parent->_parent;
		subL->_right = parent;
		parent->_parent = subL;
		// parent有可能是整棵树的根,也可能是局部的⼦树
		// 如果是整棵树的根,要修改_root
		// 如果是局部的指针要跟上⼀层链接
		if (parentParent == nullptr)
		{
			_root = subL;
			subL->_parent = nullptr;
		}
		else
		{
			if (parent == parentParent->_left)
			{
				parentParent->_left = subL;
			}
			else
			{
				parentParent->_right = subL;
			}
			subL->_parent = parentParent;
		}
		parent->_bf = subL->_bf = 0;
	}

要处理的三个节点

注意:parent不一定是根节点,所以要创建一个临时变量parentParent储存parent的父节点,处理好子树之后,再让subL的父节点指向parentParent(parentParent为空则,subL变为根节点)。

左单旋

左单旋适合一下情况

树中的左旋和右旋互为对称操作,左旋和右旋是可以相互抵消的,即经历一次左旋和一次右旋之后会恢复成原树。

 代码实现:


	void RoateL(Node* parent)
	{
		Node* subR = parent->_right;
		parent->_right = subR;
		Node* subRL = subR->_left;
		if (subRL)
		{
			subRL->_parent = subR;
		}
		Node* parentParent = parent->_parent;
		subR->_left = parent;
		parent->_parent = subR;
		parent->_right = subRL;
		if (subRL)
		{
			subRL->_parent = parent;
		}
		if (parentParent)
		{
			subR->_parent = parentParent;
			if (parentParent->_left == parent)
			{
				subR->_parent = parentParent;
				parentParent->_left = subR;
			}
			else if(parentParent->_right == parent)
			{
				subR->_parent = parentParent;
				parentParent->_right = subR;

			}
		}
		else if (parentParent == nullptr)
		{
			_root = subR;
		}

		parent->_bf = subL->_bf = 0;

	}

左右双旋

观察下面这种情况,它并不是纯粹的左边高,对于节点10是左边高,对于节点5来说是右边高。

这时候单纯的右单旋或者左单旋都不能解决问题, 这时候两次单旋就可以解决问题。以节点5为旋转点,进行一次左单旋,这时候就是一个完全左边高的树结构,完全符合右单旋的应用场景,以节点10为旋转点进行一次右单旋,树恢复平衡。

要处理的节点:

 

 代码实现:


	void RotateLR(Node* parent)
	{
		Node* subL = parent->_left;
		Node* subLR = subL->_right;
		int bf = subLR->_bf;

		RotateL(parent->_left);
		RotateR(parent);
		if (bf == 0)
		{
			subL->_bf = 0;
			subLR->_bf = 0;
			parent->_bf = 0;
		}
		else if (bf == -1)
		{
			subL->_bf = 0;
			subLR->_bf = 0;
			parent->_bf = 1;
		}
		else if (bf == 1)
		{
			subL->_bf = -1;
			subLR->_bf = 0;
			parent->_bf = 0;
		}
		else
		{
			assert(false);
		}
	}

右左双旋 


右左双旋于左右双旋类似,接下来我们以普适情况抽象出a,b,c三棵子树来讨论。另外我们需要把b⼦树的 细节进⼀步展开为12和左⼦树⾼度为h-1的e和f⼦树,因为我们要对b的⽗亲15为旋转点进⾏右单旋,右单旋需要动b树中的右⼦树。

b⼦树中新增结点的位置不同,平衡因⼦更新的细节也不同,通过观察12的平衡因⼦不同,这⾥我们要分三个场景讨论。
场景一: h >= 1时,新增结点插⼊在e⼦树,e⼦树⾼度从h-1变为h并不断更新12->15->10平衡因
⼦,引发旋转,其中12的平衡因⼦为-1,旋转后10和12平衡因⼦为0,15平衡因⼦为1。

 场景二:h >= 1时,新增结点插⼊在f⼦树,f⼦树⾼度从h-1变为h并不断更新12->15->10平衡因⼦, 引发旋转,其中12的平衡因⼦为1,旋转后15和12平衡因⼦为0,10平衡因⼦为-1。

场景三:h == 0时,a/b/c都是空树,b⾃⼰就是⼀个新增结点,不断更新15->10平衡因⼦,引发旋 转,其中12的平衡因⼦为0,旋转后10和12和15平衡因⼦均为0。

 

代码实现:


	void RotateRL(Node* parent)
	{
		Node* subR = parent->_right;
		Node* subRL = subR->_left;
		int bf = subRL->_bf;
		RotateR(parent->_right);
		RotateL(parent);
		if (bf == 0)
		{
			subR->_bf = 0;
			subRL->_bf = 0;
			parent->_bf = 0;
		}
		else if (bf == 1)
		{
			subR->_bf = 0;
			subRL->_bf = 0;
			parent->_bf = -1;
		}
		else if (bf == -1)
		{
			subR->_bf = 1;
			subRL->_bf = 0;
			parent->_bf = 0;
		}
		else
		{
			assert(false);
		}
	}

 查找

按照遍历二叉树的逻辑查找即可。


	Node* Find(const K& key)//按照键值查找
	{
		Node* cur = _root;
		while (cur)
		{
			if (cur->_kv.first < key)
			{
				cur = cur->_right;
			}
			else if (cur->_kv.first > key)
			{
				cur = cur->_left;
			}
			else
			{
				return cur;
			}
		}
		return nullptr;
	}

AVL树平衡检测

对于实现的AVL树是否合格,我们通过判断左右子树高度差来判断,即判断平衡因子。



	int _Height(Node* root)
	{
		if (root == nullptr)
			return 0;
		int leftHeight = _Height(root->_left);
		int rightHeight = _Height(root->_right);
		return leftHeight > rightHeight ? leftHeight + 1 : rightHeight + 1;
	}

	bool _IsBalanceTree(Node* root)
	{
		// 空树也是AVL树
		if (nullptr == root)
			return true;
		// 计算pRoot结点的平衡因⼦:即pRoot左右⼦树的⾼度差
		int leftHeight = _Height(root->_left);
		int rightHeight = _Height(root->_right);
		int diff = rightHeight - leftHeight;
		// 如果计算出的平衡因⼦与pRoot的平衡因⼦不相等,或者
        // pRoot平衡因⼦的绝对值超过1,则⼀定不是AVL树
		if (abs(diff) >= 2)
		{
			cout << root->_kv.first << "⾼度差异常" << endl;
			return false;
		}
		if (root->_bf != diff)
		{
			cout << root->_kv.first << "平衡因⼦异常" << endl;
			return false;
		}
		// pRoot的左和右如果都是AVL树,则该树⼀定是AVL树
		return _IsBalanceTree(root->_left) && _IsBalanceTree(root->_right);
	}

评论 16
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值