- 博客(4)
- 收藏
- 关注
原创 numpy课程学习(四)线性代数
矩阵和向量积文章目录前言一、矩阵和向量积二、矩阵特征值与特征向量三、矩阵分解3.1 奇异值分解3.2 QR分解3.3 Cholesky分解四、范数和其他数字4.1 矩阵的范数总结前言Numpy 定义了 matrix 类型,使用该 matrix 类型创建的是矩阵对象,它们的加减乘除运算缺省采用矩阵方式计算,因此用法和Matlab十分类似。但是由于 NumPy 中同时存在 ndarray 和 matrix 对象,因此用户很容易将两者弄混。这有违 Python 的“显式优于隐式”的原则,因此官方并不推荐
2020-11-28 20:36:15 279
原创 numpy课程学习(三)统计相关
统计相关前言一、次序统计1.计算最小值2.计算最大值3.计算极差二、使用步骤1.引入库2.读入数据总结前言提示:今天是课程学习的第4天,统计相关方面的知识适用范围很广,需要认真学习。一、次序统计1.计算最小值numpy.amin(a[, axis=None, out=None, keepdims=np._NoValue, initial=np._NoValue, where=np._NoValue])Return the minimum of an array or minimum alon.
2020-11-26 22:08:04 263 1
原创 numpy课程学习(二)随机抽样
随机抽样(上)前言一、随机抽样二、离散型随机变量1.二项分布2.泊松分布3.超几何分布三、连续型随机变量1.均匀分布总结前言今天,继续学习numpy中有关随机抽样的知识:一、随机抽样numpy.random 模块对 Python 内置的 random 进行了补充,增加了一些用于高效生成多种概率分布的样本值的函数,如正态分布、泊松分布等。 numpy.random.seed(seed=None) Seed the generator.seed()用于指定随机数生成时所用算法开始的整数值,如.
2020-11-24 22:11:43 825 2
原创 numpy课程学习(一)输入和输出
642318@TOCnumpy——(一)输入和输出今天,我认真学习了numpy中输入与输出的知识,分为以下几个部分:numpy二进制文件save() 、 savez() 和 load() 函数以 numpy 专用的二进制类型(npy、npz)保存和读取数据,这三个函数会自动处理ndim、dtype、shape等信息,使用它们读写数组非常方便,但是 save() 输出的文件很难与其它语言编写的程序兼容。【例1】import numpy as npoutfile = r'.\test.npy'
2020-11-23 21:59:07 679 2
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人