对计算机科学中的算法学习总结(32个算法)

这篇博客总结了32个计算机科学中的核心算法,包括A*搜索、集束搜索、二分查找、Dijkstra算法、动态规划、欧几里得算法、期望-最大算法、快速傅里叶变换、最大流量算法、Q-learning、RSA加密、奇异值分解等,涵盖了搜索、排序、加密、最优化等多个领域。
摘要由CSDN通过智能技术生成

**

对计算机科学中的算法学习总结(32个算法)

**
本文是奥地利符号计算研究所的Christoph Koutschan博士在自己的网页上发表的,这是一项计算机科学家调查后总结的算法。
A搜索算法(图形搜索算法):
A
搜索算法——图形搜索算法,从给定起点到给定终点计算出路径。其中使用了一种启发式的估算,为每个节点估算通过该节点的最佳路径,并以之为各个地点排定次序。算法以得到的次序访问这些节点。因此,A*搜索算法是最佳优先搜索的范例。

集束搜索(又名定向搜索,Beam Search)——最佳优先搜索算法的优化。使用启发式函数评估它检查的每个节点的能力。不过,集束搜索只能在每个深度中发现最前面的m个最符合条件的节点,m是固定数字——集束的宽度。

二分查找(Binary Search)——在线性数组中找特定值的算法,每个步骤去掉一半不符合要求的数据。

分支界定算法(Branch and Bound)——在多种最优化问题中寻找特定最优化解决方案的算法,特别是针对离散、组合的最优化。

Buchberger算法——一种数学算法,可将其视为针对单变量最大公约数求解的欧几里得算法和线性系统中高斯消元法的泛化。

数据压缩——采取特定编码方案,使用更少的字节数(或是其他信息承载单元)对信息编码的过程,又叫来源编码。

Diffie-Hellman密钥交换算法——一种加密协议,允许双方在事先不了解对方的情况下,在不安全的通信信道中,共同建立共享密钥。该密钥以后可与一个对称密码一起,加密后续通讯。

Dijkstra算法——针对没有负值权重

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值