Problem:
Given a non negative integer number num. For every numbers i in the range 0 ≤ i ≤ num calculate the number of 1's in their binary representation and return them as an array.
Example:
For num = 5
you should return [0,1,1,2,1,2]
.
Follow up:
- It is very easy to come up with a solution with run time O(n*sizeof(integer)). But can you do it in linear time O(n) /possibly in a single pass?
- Space complexity should be O(n).
- Can you do it like a boss? Do it without using any builtin function like __builtin_popcount in c++ or in any other language.
Code笨方法:
public class Solution {
public int[] countBits(int num) {
int[] nums = new int[num + 1];
for(int i = 0; i <= num; i++){
int k = i;
int count = 0;
while(k != 0){
if ((k & 1) == 1){
count++;
}
k = k >> 1;
}
nums[i] = count;
}
return nums;
}
}
Code聪明方法,发现i和i/2之间存在规律:
public class Solution {
public int[] countBits(int num) {
int[] nums = new int[num + 1];
for(int i = 0; i <= num; i++){
nums[i] = nums[i / 2] + (i % 2); //i/2可以替换成i >> 1;i%2可以替换成i&1
}
return nums;
}
}
public class Solution {
public int[] countBits(int num) {
int[] nums = new int[num + 1];
nums[0] = 0;
for(int i = 1; i <= num; i++){
nums[i] = nums[i & (i - 1)] + 1;
}
return nums;
}
}