★进制转换问题
问:如果6*6=40 。
那么13*5=? (66)
解:有6*6=40可以知道这里使用的进制不是常用的十进制,由等式左边的操作数6可以知道这里使用的进制是七进制以上的进制(六进制不包含6本身)。
将等式左边的操作数两个6换成十进制则两个操作数数值不变,根据十进制计算,则等式左边等于36,则等式转换成十进制的36等于非十进制的40。
假设等式右边的40为n进制,那么将40转化成十进制为(4*n^1+0*n^0),亦等于(4n),则36=4n,n=9,所以原等式使用的是九进制进行的换算。
那么可以将所求等式的左边的操作数转换成十进制进行计算,则13*5转换为(1*9^1+3*9^0)*(5*9^0)=12*5=60,这里的结果为十进制,再将十进制的60转换成九进制的66。则原所求等式的结果为66。