Linux查看文件内容的5种方式

目录

1. more指令 —— 分页显示文件内容

2. less指令 —— 可以向前或向后查看文件内容

3. head指令 —— 查看文件开头的内容

4. tail指令 —— 显示文件尾部的内容

5. cat指令 —— 显示文件内容


1. more指令 —— 分页显示文件内容

more指令会以一页一页的形式显示文件内容,按空白键(space)显示下一页内容,按Enter键会显示下一行内容,按 b 键就会往回(back)一页显示,其基本用法如下:

more    file1             查看文件file1的文件内容;

more   -num   file2    查看文件file2的内容,一次显示num行;

more   +num   file3   查看文件file3的内容,从第num行开始显示;


2. less指令 —— 可以向前或向后查看文件内容

less指令查看文件内容时可以向前或向后随意查看内容;

less指令的基本用法为:

less   file1    查看文件file1的内容;

less   -m    file2     查看文件file2的内容,并在屏幕底部显示已显示内容的百分比;

按空格键显示下一屏的内容,按回车键显示下一行的内容; 

按  U  向前滚动半页,按  Y   向前滚动一行;

按[PageDown]向下翻动一页,按[PageUp]向上翻动一页;

按   Q   退出less命令;


3. head指令 —— 查看文件开头的内容

head指令用于显示文件开头的内容,默认情况下,只显示文件的头10行内容;

head指令的基本用法:

head  -n  <行数>   filename      显示文件内容的前n行;

例如:head   -n   5   file1     显示文件file1的前5行内容

head   -c  <字节>    filename      显示文件内容的前n个字节;

例如:head  -c  20  file2      显示文件file2的前20个字节内容


4. tail指令 —— 显示文件尾部的内容

 tail指令用于显示文件尾部的内容,默认情况下只显示指定文件的末尾10行;

tail指令的基本用法:

tail    file1      显示文件file1的尾部10行内容;

tail  -n  <行数>  filename    显示文件尾部的n行内容;

例如:tail  -n  5   file1    显示文件file1的末尾5行内容

tail  -c  <字节数>   filename     显示文件尾部的n个字节内容;

例如:tail  -c  20   file2    显示文件file2的末尾20个字节


5. cat指令 —— 显示文件内容

使用cat命令时,如果文件内容过多,则只会显示最后一屏的内容;

cat指令的基本用法:

cat   file1        用于查看文件名为file1的文件内容;

cat   -n   file2       查看文件名为file2的文件内容,并从1开始对所有输出的行数(包括空行)进行编号

cat   -b   file3      查看文件名为file3的文件内容,并从1开始对所有的非空行进行编号


—— END ——

 

 

### CNN卷积核的空间不变性 卷积神经网络(CNN)中的卷积操作具备空间不变性的特性,这意味着无论特征出现在输入数据的哪个位置,只要该模式存在,模型都能识别出来[^1]。具体来说,在卷积过程中使用的滤波器(即卷积核)在整个图像上滑动并执行相同的操作,这使得同一组权重能够检测到不同位置上的相似图案或边缘。 这种机制允许CNN自动学习如何捕捉平移不变性——即使目标物体在图片的不同区域移动,仍然能被正确分类。例如,如果一张照片里有一只猫位于画面左侧还是右侧并不影响最终判断其为“猫”。因此,通过共享权值的方式实现了高效而强大的表示能力。 ### 卷积核的冗余性及其影响 关于卷积核中存在的潜在冗余现象,研究表明并非所有的通道都对特定任务有用;某些过滤器可能携带重复的信息或者贡献较小。当多个卷积核捕获几乎相同的视觉模式时就会形成所谓的“冗余”。 一方面,过多不必要的参数不仅增加了计算成本还可能导致过拟合问题的发生。另一方面,适当减少这些无意义连接有助于简化架构设计、加速训练过程以及提高泛化性能。为了应对这种情况,研究者们提出了诸如剪枝(pruning)[^2]等技术来消除不重要的连接从而构建更紧凑有效的模型。 ```python import torch.nn as nn class PrunedCNN(nn.Module): def __init__(self, num_classes=10): super(PrunedCNN, self).__init__() # 假设这里已经应用了一些方法去除了部分冗余卷积核 self.conv1 = nn.Conv2d(in_channels=3, out_channels=64, kernel_size=3) def forward(self, x): x = F.relu(self.conv1(x)) return x ```
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值