PTA 7-3 地铁一日游 (30 分)

本文讲述了森森在魔都地铁的旅行计划,他利用特殊的乘车策略,在每个计费距离最远的站点或线路末端拍照,记录下旅程中的认证站点。通过计算和算法,揭示了从不同出发站点可能到达的所有认证站点列表。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 

森森喜欢坐地铁。这个假期,他终于来到了传说中的地铁之城——魔都,打算好好过一把坐地铁的瘾!

魔都地铁的计价规则是:起步价 2 元,出发站与到达站的最短距离(即计费距离)每 K 公里增加 1 元车费。

例如取 K = 10,动安寺站离魔都绿桥站为 40 公里,则车费为 2 + 4 = 6 元。

为了获得最大的满足感,森森决定用以下的方式坐地铁:在某一站上车(不妨设为地铁站 A),则对于所有车费相同的到达站,森森只会在计费距离最远的站或线路末端站点出站,然后用森森美图 App 在站点外拍一张认证照,再按同样的方式前往下一个站点。

坐着坐着,森森突然好奇起来:在给定出发站的情况下(在出发时森森也会拍一张照),他的整个旅程中能够留下哪些站点的认证照?

地铁是铁路运输的一种形式,指在地下运行为主的城市轨道交通系统。一般来说,地铁由若干个站点组成,并有多条不同的线路双向行驶,可类比公交车,当两条或更多条线路经过同一个站点时,可进行换乘,更换自己所乘坐的线路。举例来说,魔都 1 号线和 2 号线都经过人民广场站,则乘坐 1 号线到达人民广场时就可以换乘到 2 号线前往 2 号线的各个站点。换乘不需出站(也拍不到认证照),因此森森乘坐地铁时换乘不受限制。

输入格式:

输入第一行是三个正整数 NM 和 K,表示魔都地铁有 N 个车站 (1 ≤ N ≤ 200),M 条线路 (1 ≤ M ≤ 1500),最短距离每超过 K 公里 (1 ≤ K ≤ 106),加 1 元车费。

接下来 M 行,每行由以下格式组成:

<站点1><空格><距离><空格><站点2><空格><距离><空格><站点3> ... <站点X-1><空格><距离><空格><站点X>

其中站点是一个 1 到 N 的编号;两个站点编号之间的距离指两个站在该线路上的距离。两站之间距离是一个不大于 106 的正整数。一条线路上的站点互不相同。

注意:两个站之间可能有多条直接连接的线路,且距离不一定相等。

再接下来有一个正整数 Q (1 ≤ Q ≤ 200),表示森森尝试从 Q 个站点出发。

最后有 Q 行,每行一个正整数 Xi**,表示森森尝试从编号为 **Xi 的站点出发。

输出格式:

对于森森每个尝试的站点,输出一行若干个整数,表示能够到达的站点编号。站点编号从小到大排序。

输入样例:

6 2 6
1 6 2 4 3 1 4
5 6 2 6 6
4
2
3
4
5

输出样例:

1 2 4 5 6
1 2 3 4 5 6
1 2 4 5 6
1 2 4 5 6

代码实现

#include <algorithm>
#include <cstdio>
#include <map>
#include <queue>
using namespace std;
const int maxn = 205;
const int INF = 0x3f3f3f3f;
int d[maxn][maxn];
int terminal[maxn], vis[maxn][maxn];
map<int, int> been[maxn];
int n, m, k;
int line[10000];

int main() {
#ifdef LOCAL
    freopen("E:\\Cpp\\1.in", "r", stdin);
#endif

    scanf("%d%d%d", &n, &m, &k);
    for (int i = 1; i <= n; i++)
        for (int j = 1; j <= n; j++)
            d[i][j] = (i == j) ? 0 : INF;
    int u, v, len;
    int fare;
    char ch;
    while (m--) {
        int len = 0;
        while (scanf("%d", &u)) {
            line[len++] = u;
            ch = getchar();
            if (ch == '\n') {
                terminal[line[0]] = terminal[line[len - 1]] = 1;
                for (int i = 0; i != len - 1; i += 2) {
                    u = line[i], v = line[i + 2];
                    d[v][u] = d[u][v] = min(d[u][v], line[i + 1]);
                }
                break;
            }
        }
    }
    for (int k = 1; k <= n; k++) {
        for (int i = 1; i <= n; i++)
            for (int j = 1; j <= n; j++)
                d[i][j] = min(d[i][j], d[i][k] + d[k][j]);
    }
    for (int i = 1; i <= n; i++) {
        for (int j = 1; j <= n; j++) {
            if (i == j || d[i][j] == INF)
                continue;
            fare = 2 + d[i][j] / k;
            if (!been[i].count(fare) || been[i][fare] < d[i][j])
                been[i][fare] = d[i][j];
        }
    }
    int t, cur, first;
    queue<int> Q;
    scanf("%d", &t);
    while (t--) {
        first = 1;
        scanf("%d", &u);
        vis[u][u] = 1;
        Q.push(u);
        while (!Q.empty()) {
            cur = Q.front();
            Q.pop();
            for (int i = 1; i <= n; i++) {
                if (vis[u][i] || d[cur][i] == INF)
                    continue;
                if (terminal[i]) {
                    Q.push(i);
                    vis[u][i] = 1;
                } else {
                    fare = 2 + d[cur][i] / k;
                    if (d[cur][i] == been[cur][fare]) {
                        Q.push(i);
                        vis[u][i] = 1;
                    }
                }
            }
        }
        for (int i = 1; i <= n; i++) {
            if (vis[u][i]) {
                if (first) {
                    printf("%d", i);
                    first = 0;
                } else
                    printf(" %d", i);
            }
        }
        printf("\n");
    }

    return 0;
}

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值