最优化理论与方法-牛顿迭代法后续

本文探讨了牛顿迭代法在数学求解方程根和机器学习最优化问题中的应用,强调了在最优化理论中计算海森矩阵的重要性。文章还对比了牛顿法与梯度下降法,指出牛顿法的二阶收敛性和对Hessian矩阵的需求,同时提到了拟牛顿法作为解决计算复杂性的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


关注微信公众号【Microstrong】,我现在研究方向是机器学习、深度学习,分享我在学习过程中的读书笔记!一起来学习,一起来交流,一起来进步吧!

本文同步更新在我的微信公众号里,地址:https://mp.weixin.qq.com/s?__biz=MzI5NDMzMjY1MA==&mid=2247484108&idx=1&sn=dbafbcd5cf6db99c7c2aa1b9eb37c3ba&chksm=ec653349db12ba5fc72a2c951cb9224e3b3f856efb89b7561386dc083fe8cf05bd8e61d3dc14#rd


目录:

(1)牛顿迭代法在数学中求解方程的根。

(2)最优化理论与方法中牛顿迭代法应用。

(3)对Hessian矩阵的深入讨论。

(4)牛顿法与梯度下降法的区别。

(一) 牛顿迭代法在数学中求解方程的根</

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值