神经网络梯度消失和梯度爆炸及解决办法

本文探讨了深度神经网络中常见的梯度消失和梯度爆炸问题,分析了它们的根本原因,特别是sigmoid激活函数在这些问题中的角色。提出了使用ReLU、Leaky ReLU、PReLU等激活函数以及Batch Normalization等方法作为解决方案。同时,比较了sigmoid、tanh与ReLU系列激活函数的优缺点,为选择激活函数提供了实践指导。
摘要由CSDN通过智能技术生成


关注微信公众号【Microstrong】,我现在研究方向是机器学习、深度学习,分享我在学习过程中的读书笔记!一起来学习,一起来交流,一起来进步吧!


本文同步更新在我的微信公众号中,公众号文章地址:https://mp.weixin.qq.com/s/6xHC5woJND14bozsBNaaXQ


目录:

(1)    神经网络梯度消失与梯度爆炸

(2)    几种激活函数的比较


推荐阅读:《神经网络激活函数的作用是什么?》


一、神经网络梯度消失与梯度爆炸


(1)简介梯度消失与梯度爆炸


层数比较多的神经网络模型在训练的时候会出现梯度消失(gradient vanishing problem)和梯度爆炸(gradient exploding problem)问题。梯度消失问题和梯度爆炸问题一般会随着网络层数的增加变得越来越明显。

例如,对于图1所示的含有3个隐藏层的神经网络,梯度消失问题发生时,靠近输出层的hidden layer 3的权值更新相对正常,但是靠近输入层的hidden layer1的权值更新会变得很慢,导致靠近输入层的隐藏层权值几乎不变,扔接近于初始化的权值。这就导致hidden layer 1 相当于只是一个映射层,对所有的输入做了一个函数映射,这时此深度神经网络的学习就等价于只有后几层的隐藏层网络在学习。梯度爆炸的情况是:当初始的权值过大,靠近输入层的hidden layer 1的权值变化比靠近输出层的hidden layer 3的权值变化更快,就会引起梯度爆炸的问题。




(2)梯度不稳定问题


在深度神经网络中的梯度是不稳定的,在靠近输入层的隐藏层中或会消失,或会爆炸。这种不稳定性才是深度神经网络中基于梯度学习的根本问题。

梯度不稳定的原因:前面层上的梯度是来自后面层上梯度的乘积。当存在过多的层时,就会出现梯度不稳定场景,比如梯度消失和梯度爆炸。

(3)产生梯度消失的根本原因

我们以图2的反向传播为例,假设每一层只有一个神经元且对于每一层都可以用公式1表示,其中σ为sigmoid函数,C表示的是代价函数,前一层的输出和后一层的输入关系如公式1所示。我们可以推导出公式2。


而sigmoid函数的导数如图3所示。

可见,的最大值为,而我们一般会使用标准方法来初始化网络权重,即使用一个均值为0标准差为1的高斯分布。因此,初始化的网络权值通常都小于1,从而有。对于2式的链式求导,层数越多,求导结果越小,最终导致梯度消失的情况出现。


图4:梯度变化的链式求导分析

对于图4,有共同的求导项。可以看出,前面的网络层比后面的网络层梯度变化更小,故权值变化缓慢,从而引起了梯度消失问题。

(4)产生梯度爆炸的根本原因

,也就是w比较大的情况。则前面的网络层比后面的网络层梯度变化更快,引起了梯度爆炸的问题。


(5)当激活函数为sigmoid时,梯度消失和梯度爆炸哪个更容易发生?

评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值