simcse实践使用

实践目标:

跑通simcse,看看和传统bert比,是否表征能力更强,是否相似句的相似度更高,非相似句的相似度更低。

github地址:

https://github.com/princeton-nlp/SimCSE

跑代码踩坑记录:

1. couldn‘t reach http://raw.githubusercontent.com/huggingface/...

原因,因为这个huggingface的代码,跑的过程中需要在线download一些数据和代码,而这些代码是需要vpn的,所以必须开vpn全局模式,而且时灵时不灵。或者你就在gpu服务器访问,例如mistgpu

2. No such file or directory: './SentEval/data/downstream/STS/STSBenchmark/sts-train.csv'

需要手动下载数据集参考:./SentEval/data/download/download_dataset.sh

它会在每次跑验证集的时候,跑一轮huggingface设置的验证集,包括:

 

怎么取消这种验证方式目前尚不清楚

3. 数据集

分为有监督和无监督

参考:

./data/download_nli.sh和./data/download_wiki.sh

4. 跑通

直接跑还有个问题,就是每次走5 fold cross validation 所以比较慢

5. 实验效果

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值