Spark ‘PHYSICAL‘ memory limit. Current usage: 1.6 GB of 1.5 GB physical memory used;

Spark程序在运行时由于超过物理内存限制而异常重启。日志显示容器使用了超过其限制的内存。为解决此问题,提交任务时需增加内存设置,例如设置--driver-memory4G和--executor-memory4G。这将确保Driver和Executor有足够的内存资源运行。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Spark程序在运行过程中异常重启,查看错误日志如下:

Failing this attempt.Diagnostics: [2023-04-24 10:38:09.784]Container [pid=5935,containerID=container_1682299008692_0019_01_000001] is running 111923200B beyond the 'PHYSICAL' memory limit. Current usage: 1.6 GB of 1.5 GB physical memory used; 3.5 GB of 3.1 GB virtual memory used. Killing container.

Dump of the process-tree for container_1682299008692_0019_01_000001 :

简单翻译一下内容:
尝试失败。诊断:[2023-04-24 10:38:09.784]容器[进程id=5935,容器id= container_168229900869_0019_01_000001]运行111923200B超出’物理’内存限制。当前使用情况:1.6 GB / 1.5 GB物理内存已使用;3.1 GB的虚拟内存使用了3.5 GB。造成容器。

转储container_1682299008692_0019_01_000001的进程树:

解决办法:
提交Spark任务的时候设置内存
增加参数 –driver-memory 4G --executor-memory 4G
如下

spark-submit --master yarn --deploy-mode cluster --class com.bigdata.work.DataWorker --jars hdfs:///user/jar/* --driver-memory 4G --driver-cores 8 --num-executors 4 --executor-memory 4G /bigdata/sparkJob/DataWorker.jar

参数解释:

【–master yarn】 在hadoop yarn 集群上运行

    • –master: 设置主节点 URL 的参数。
      可 以 是 spark://host:port, mesos://host:port, yarn, yarn-cluster,yarn-client, local
      
      - local: 本地机器。
      - spark://host:port:远程 Spark 单机集群。
      - yarn:yarn 集群
      

【–deploy-mode cluster】在集群内启动Spark程序

Driver 程序运行的地方,client 或者 cluster,默认是client。
允许选择是否在本地(使用 client 选项)启动 Spark 驱动程序,或者在集群内(使用 cluster 选项)的其中一台工作机器上启动。默认值是 client。

【–class com.bigdata.work.DataWorker】 设置main类

主类名称,含包名

【–jars hdfs:///user/jar/*】

--jars 依赖的第三方jar包

【–driver-memory 4G】 Driver程序使用内存4G

 Driver 程序使用内存大小

【–driver-cores 2 】Driver使用核数2

driver 使用的 core,仅在 cluster 模式下,默认为 1。
driver 程序的使用 core 个数(默认为 1),仅限于 Spark standalone模式

【–num-executors 4】 启动的executor数量

一共启动的 executor 数量,默认是 2 个。在 yarn 下使用

【–executor-memory 4G 】每个exector的内存4G

每个 executor 的内存,默认是1G

–executor-core 每个executor的核数,在yarn或者standalone下使用。

<think>嗯,用户遇到了Spark程序中的java.lang.OutOfMemoryError: GC overhead limit exceeded错误,需要调优JVM堆内存配置来解决。首先,我得回忆一下这个错误的原因。根据引用[1]和[2],这个错误通常是因为JVM在垃圾回收上花费了太多时间,而回收的内存却很少,导致应用性能下降。可能的原因包括内存泄漏、堆内存不足或者数据处理不当。 接下来,我得考虑Spark的特点。Spark是基于内存的计算框架,如果数据量太大或者内存配置不合理,容易引发GC问题。用户可能需要调整堆内存大小,比如增加executor的内存,或者调整JVM参数。比如,设置-XX:-UseGCOverheadLimit可以绕过这个错误,但这只是临时解决方案,根本问题还是内存不足或者代码效率低。 另外,可能需要优化Spark的作业,比如减少shuffle操作,或者使用更高效的数据结构。比如,使用广播变量减少数据传输,或者调整分区数量,避免数据倾斜。用户的数据处理过程中可能有内存泄漏,比如未及时释放缓存,或者重复创建对象,需要检查代码。 还要考虑JVM的垃圾回收器选择。比如,G1垃圾回收器适合大内存和多核环境,可能比默认的Parallel GC更高效。同时,调整新生代和老年代的比例,比如设置-XX:NewRatio,可能有助于减少GC时间。 用户可能需要分步骤来解决问题:首先调整内存配置,然后优化代码,最后考虑GC调优。同时,监控工具如Spark UI和JVM的GC日志分析也很重要,可以定位具体问题所在。比如,通过GC日志查看Full GC的频率和耗时,判断是否有内存泄漏或者需要调整堆大小。 需要提醒用户,单纯增加堆内存可能不是根本解决办法,如果数据量超过集群资源,可能需要增加节点或者调整数据分区方式。此外,检查代码中的持久化策略,避免不必要的缓存,及时释放资源也很关键。</think>### Spark程序出现`java.lang.OutOfMemoryError: GC overhead limit exceeded`的解决方案 #### 1. 错误原因分析 该错误表示JVM在垃圾回收(GC)时花费了超过98%的时间,但仅回收了不到2%的堆内存,导致应用性能急剧下降[^1][^2]。在Spark中,常见原因包括: - **内存不足**:Executor分配的堆内存过小,无法处理数据量。 - **数据倾斜**:某些分区的数据量远大于其他分区,导致单任务内存溢出。 - **代码低效**:频繁创建对象或未释放缓存(如过度使用`cache()`)。 - **GC配置不当**:未使用适合Spark的垃圾回收策略。 --- #### 2. 调优步骤与配置 ##### **步骤1:调整Spark内存配置** - **增加Executor内存**:通过`spark.executor.memory`调整堆内存(默认1G),例如: ```bash spark-submit --executor-memory 8g ... ``` - **控制堆外内存**:调整`spark.executor.memoryOverhead`(默认executor内存的10%),防止堆外内存(如网络缓冲)不足: ```bash spark-submit --conf spark.executor.memoryOverhead=2048 ... ``` ##### **步骤2:优化代码** - **减少数据缓存**:避免不必要的`cache()`或`persist()`,及时用`unpersist()`释放。 - **使用广播变量**:对小数据集使用`broadcast`,减少数据传输。 - **调整分区数**:通过`repartition()`或`coalesce()`平衡分区,避免数据倾斜。 ##### **步骤3:JVM参数调优** - **启用G1垃圾回收器**(适合大内存场景): ```bash spark-submit --conf "spark.executor.extraJavaOptions=-XX:+UseG1GC" ``` - **调整GC策略**: ```bash # 增大新生代区域,减少Full GC频率 --conf "spark.executor.extraJavaOptions=-XX:NewRatio=3" ``` - **绕过GC限制(临时方案)**: ```bash --conf "spark.executor.extraJavaOptions=-XX:-UseGCOverheadLimit" ``` ##### **步骤4:监控与分析** - **查看Spark UI**:分析各Stage的内存使用和GC时间。 - **启用GC日志**: ```bash --conf "spark.executor.extraJavaOptions=-XX:+PrintGCDetails -XX:+PrintGCTimeStamps" ``` 通过日志定位频繁GC的代码段。 --- #### 3. 调优示例 ```bash spark-submit \ --executor-memory 8g \ --conf spark.executor.memoryOverhead=4096 \ --conf "spark.executor.extraJavaOptions=-XX:+UseG1GC -XX:InitiatingHeapOccupancyPercent=35" \ --conf spark.sql.shuffle.partitions=200 \ your_app.py ``` --- #### 4. 其他注意事项 - **数据序列化**:使用Kryo序列化减少内存占用: ```bash --conf spark.serializer=org.apache.spark.serializer.KryoSerializer ``` - **资源动态分配**:启用`spark.dynamicAllocation.enabled=true`,根据负载自动调整Executor数量。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值