高等数学---第三章微分中值定理及导数应用---极值问题

本文探讨了数学中的极值问题,包括拐点与导数不存在的极值点情况。解释了一阶导数和二阶导数在判断极值点中的作用,指出二阶导数为0时也可能存在极值。同时,概述了原函数、一阶导数和二阶导数的概念。此外,讨论了最值问题的解决方法,并阐述了有界、可导和连续性的相互关系。最后,介绍了垂直、水平和斜渐近线的定义和计算方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1什么是极值以及极值问题如何求解

极值点有两种情况,一种是拐点,即一阶导为0,二阶导随情况变化。二是导数不存在的点。
二阶导并不只是大于0时才是极值点,二阶导等于0时也有可能是极值点。
在这里插入图片描述
在这里插入图片描述

2原函数,一阶导,二阶导到底是什么意思?

在这里插入图片描述
在这里插入图片描述

3最值问题及求解

在这里插入图片描述

4有界,可导和连续的关系?

5什么是渐近线

在这里插入图片描述
在这里插入图片描述
垂直渐近线是x趋于x0时,y趋于无穷。水平渐近线时x趋于无穷时y趋于y0。斜渐近线,是先求x趋于无穷时y比x的斜率,然后利用y-kx得出剩余的项

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值